Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 5, Mai 2011
Page(s) 521 - 526
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011275018
Publié en ligne 25 mai 2011
  1. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961 ; 9 : 493-495. [CrossRef] [PubMed] [Google Scholar]
  2. Lagha M, Rocancourt D, Relaix F. Origine du muscle squelettique : rôles de Pax3/Pax7. Med Sci (Paris) 2005 ; 21 : 801-803. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell : the stem cell that came in from the cold. J Histochem Cytochem 2006 ; 54 : 1177-1191. [CrossRef] [PubMed] [Google Scholar]
  4. Lai EC. Notch signaling : control of cell communication and cell fate. Development 2004 ; 131 : 965-973. [CrossRef] [PubMed] [Google Scholar]
  5. Borggrefe T, Oswald F. The Notch signaling pathway : transcriptional regulation at Notch target genes. Cell Mol Life Sci 2009 ; 66 : 1631-1646. [CrossRef] [PubMed] [Google Scholar]
  6. Brou C, Logeat F. Endocytose et voie de signalisation Notch. Med Sci (Paris) 2006 ; 22 : 685-688. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. Kopan R, Ilagan MX. The canonical Notch signaling pathway : unfolding the activation mechanism. Cell 2009 ; 137 : 216-233. [CrossRef] [PubMed] [Google Scholar]
  8. Bray SJ. Notch signalling : a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006 ; 7 : 678-689. [CrossRef] [PubMed] [Google Scholar]
  9. Yang LT, Nichols JT, Yao C, et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 2005 ; 16 : 927-942. [CrossRef] [PubMed] [Google Scholar]
  10. Freitas C, Rodrigues S, Charrier JP, et al. Horloge moléculaire et segmentation des vertébrés : qui fait quoi ? Med Sci (Paris) 2002 ; 18 : 883-887. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Dequeant ML, Pourquie O. Segmental patterning of the vertebrate embryonic axis. Nat Rev Genet 2008 ; 9 : 370-382. [CrossRef] [PubMed] [Google Scholar]
  12. Ozbudak EM, Pourquie O. The vertebrate segmentation clock : the tip of the iceberg. Curr Opin Genet Dev 2008 ; 18 : 317-323. [CrossRef] [PubMed] [Google Scholar]
  13. Ferjentsik Z, Hayashi S, Dale JK, et al. Notch is a critical component of the mouse somitogenesis oscillator, is essential for the formation of the somites. PLoS genetics 2009 ; 5 : e1000662. [CrossRef] [PubMed] [Google Scholar]
  14. Buckingham M, Relaix F. The role of Pax genes in the development of tissues and organs : Pax3 and Pax7 regulate muscle progenitor cell functions. Annual review of cell and developmental biology 2007 ; 23 : 645-673. [CrossRef] [PubMed] [Google Scholar]
  15. Buckingham M, Vincent SD. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 2009 ; 19 : 444-453. [CrossRef] [PubMed] [Google Scholar]
  16. Ben-Yair R, Kalcheim C. Notch and bone morphogenetic protein differentially act on dermomyotome cells to generate endothelium, smooth, and striated muscle. J Cell Biol 2008 ; 180 : 607-618. [CrossRef] [PubMed] [Google Scholar]
  17. Delfini MC, Hirsinger E, Pourquie O, Duprez D. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 2000 ; 127 : 5213-5224. [PubMed] [Google Scholar]
  18. Hirsinger E, Malapert P, Dubrulle J, et al. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 2001 ; 128 : 107-116. [PubMed] [Google Scholar]
  19. Kopan R, Nye JS, Weintraub H. The intracellular domain of mouse Notch : a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 1994 ; 120 : 2385-2396. [PubMed] [Google Scholar]
  20. Jarriault S, Brou C, Logeat F, et al. Signalling downstream of activated mammalian Notch. Nature 1995 ; 377 : 355-358. [CrossRef] [PubMed] [Google Scholar]
  21. Kuroda K, Tani S, Tamura K, et al. Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 1999 ; 274 : 7238-7244. [CrossRef] [PubMed] [Google Scholar]
  22. Buas MF, Kabak S, Kadesch T. Inhibition of myogenesis by Notch : evidence for multiple pathways. J Cell Physiol 2009 ; 218 : 84-93. [CrossRef] [PubMed] [Google Scholar]
  23. Shawber C, Nofziger D, Hsieh JJ, et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 1996 ; 122 : 3765-3773. [PubMed] [Google Scholar]
  24. Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci USA 2007 ; 104 : 537-542. [CrossRef] [Google Scholar]
  25. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998 ; 14 : 381-392. [CrossRef] [PubMed] [Google Scholar]
  26. Vasyutina E, Lenhard DC, Wende H, et al. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells. Proc Natl Acad Sci USA 2007 ; 104 : 4443-4448. [CrossRef] [Google Scholar]
  27. Seale P, Sabourin LA, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000 ; 102 : 777-786. [CrossRef] [PubMed] [Google Scholar]
  28. Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 2005 ; 435 : 948-953. [CrossRef] [PubMed] [Google Scholar]
  29. Tedesco FS, Dellavalle A, Diaz-Manera J, et al. Repairing skeletal muscle : regenerative potential of skeletal muscle stem cells. J Clin Invest 2010 ; 120 : 9-11. [Google Scholar]
  30. Buckingham M, Montarras D. Skeletal muscle stem cells. Curr Opin Genet Dev 2008 ; 18 : 330-336. [CrossRef] [PubMed] [Google Scholar]
  31. Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 2002 ; 3 : 397-409. [CrossRef] [PubMed] [Google Scholar]
  32. Kitamoto T, Hanaoka K. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 2010 ; 28 : 2205-2216. [CrossRef] [PubMed] [Google Scholar]
  33. Conboy IM, Rando TA. Aging, stem cells and tissue regeneration : lessons from muscle. Cell Cycle 2005 ; 4 : 407-410. [CrossRef] [PubMed] [Google Scholar]
  34. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science 2003 ; 302 : 1575-1577. [CrossRef] [PubMed] [Google Scholar]
  35. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005 ; 433 : 760-764. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.