Free Access
Med Sci (Paris)
Volume 27, Number 4, Avril 2011
Page(s) 382 - 386
Section M/S Revues
Published online 28 April 2011
  1. RiceCM. Flaviviridae: the viruses and their replication, 3rd ed.Philadelphie : Lippincott-Raven Press, 1996. [Google Scholar]
  2. BarontiC, SireJ, de LamballerieX, QueratG. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology 2010 ; 404 : 319-330. [CrossRef] [PubMed] [Google Scholar]
  3. FalconarAK. Monoclonal antibodies that bind to common epitopes on the dengue virus type 2 nonstructural-1 and envelope glycoproteins display weak neutralizing activity and differentiated responses to virulent strains: implications for pathogenesis and vaccines. Clin Vaccine Immunol 2008 ; 15 : 549-561. [CrossRef] [PubMed] [Google Scholar]
  4. ZhouY, RayD, ZhaoY, et al. Structure and function of flavivirus NS5 methyltransferase. J Virol 2007 ; 81 : 3891-3903. [CrossRef] [PubMed] [Google Scholar]
  5. AshourJ, Laurent-RolleM, ShiPY, Garcia-SastreA. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 2009 ; 83 : 5408-5418. [CrossRef] [PubMed] [Google Scholar]
  6. EllencronaK, SyedA, JohanssonM. Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism. Biol Chem 2009 ; 390 : 319-323. [CrossRef] [PubMed] [Google Scholar]
  7. BrownAN, KentKA, BennettCJ, BernardKA. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 2007 ; 368 : 422-430. [CrossRef] [PubMed] [Google Scholar]
  8. PurthaWE, ChachuKA, VirginHWt, DiamondMS. Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling. J Virol 2008 ; 82 : 10964-10974. [CrossRef] [PubMed] [Google Scholar]
  9. SamuelMA, DiamondMS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 2006 ; 80 : 9349-9360. [CrossRef] [PubMed] [Google Scholar]
  10. WangP, DaiJ, BaiF, et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 2008 ; 82 : 8978-8985. [CrossRef] [PubMed] [Google Scholar]
  11. SamuelMA, WangH, SiddharthanV, et al. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci USA 2007 ; 104 : 17140-17145. [CrossRef] [Google Scholar]
  12. VermaS, LoY, ChapagainM, et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier. Virology 2009 ; 385 : 425-433. [CrossRef] [PubMed] [Google Scholar]
  13. SampsonBA, ArmbrustmacherV. West Nile encephalitis: the neuropathology of four fatalities. Ann NY Acad Sci 2001 ; 951 : 172-178. [CrossRef] [Google Scholar]
  14. SejvarJJ. The long-term outcomes of human West Nile virus infection. Clin Infect Dis 2007 ; 44 : 1617-1624. [CrossRef] [PubMed] [Google Scholar]
  15. LeisAA, StokicDS. Neuromuscular manifestations of human west nile virus infection. Curr Treat Options Neurol 2005 ; 7 : 15-22. [CrossRef] [PubMed] [Google Scholar]
  16. CarsonPJ, KonewkoP, WoldKS, et al. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin Infect Dis 2006 ; 43 : 723-730. [CrossRef] [PubMed] [Google Scholar]
  17. MurrayK, WalkerC, HerringtonE, et al. Persistent infection with West Nile virus years after initial infection. J Infect Dis 2010 ; 201 : 2-4. [CrossRef] [PubMed] [Google Scholar]
  18. JeanCM, HonarmandS, LouieJK, GlaserCA. Risk factors for West Nile virus neuroinvasive disease, California, 2005. Emerg Infect Dis 2007 ; 13 : 1918-1920. [PubMed] [Google Scholar]
  19. BuschMP, GlynnSA. Use of blood-donor and transfusion-recipient biospecimen repositories to address emerging blood-safety concerns and advance infectious disease research: the national heart, lung, and blood institute biologic specimen repository. J Infect Dis 2009 ; 199 : 1564-1566. [CrossRef] [PubMed] [Google Scholar]
  20. BuschMP, KleinmanSH, ToblerLH, et al. Virus and antibody dynamics in acute West Nile virus infection. J Infect Dis 2008 ; 198 : 984-993. [CrossRef] [PubMed] [Google Scholar]
  21. PrinceHE, ToblerLH, YehC, et al. Persistence of West Nile virus-specific antibodies in viremic blood donors. Clin Vaccine Immunol 2007 ; 14 : 1228-1230. [CrossRef] [PubMed] [Google Scholar]
  22. ToblerLH, CameronMJ, LanteriMC, et al. Interferon and interferon-induced chemokine expression is associated with control of acute viremia in West Nile virus-infected blood donors. J Infect Dis 2008 ; 198 : 979-983. [CrossRef] [PubMed] [Google Scholar]
  23. DaffisS, SamuelMA, SutharMS, et al. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol 2008 ; 82 : 8465-8475. [CrossRef] [PubMed] [Google Scholar]
  24. WangT, TownT, AlexopoulouL, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004 ; 10 : 1366-1373. [CrossRef] [PubMed] [Google Scholar]
  25. DaffisS, SamuelMA, SutharMS, et al. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 2008 ; 82 : 10349-10358. [CrossRef] [PubMed] [Google Scholar]
  26. Daffis S, Samuel MA, Keller BC, et al. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog 2007 ; 3 : e106. [CrossRef] [PubMed] [Google Scholar]
  27. WalidMS, MahmoudFA. Successful treatment with intravenous immunoglobulin of acute flaccid paralysis caused by west nile virus. Perm J 2009 ; 13 : 43-46. [PubMed] [Google Scholar]
  28. SitatiEM, DiamondMS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 2006 ; 80 : 12060-12069. [CrossRef] [PubMed] [Google Scholar]
  29. PurthaWE, MyersN, MitaksovV, et al. Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur J Immunol 2007 ; 37 : 1845-1854. [CrossRef] [PubMed] [Google Scholar]
  30. BrienJD, UhrlaubJL, Nikolich-ZugichJ. Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection. Eur J Immunol 2007 ; 37 : 1855-1863. [CrossRef] [PubMed] [Google Scholar]
  31. LanteriMC, HeitmanJW, OwenRE, et al. Comprehensive analysis of west nile virus-specific T cell responses in humans. J Infect Dis 2008 ; 197 : 1296-1306. [CrossRef] [PubMed] [Google Scholar]
  32. ParsonsR, LelicA, HayesL, et al. The memory T cell response to West Nile virus in symptomatic humans following natural infection is not influenced by age and is dominated by a restricted set of CD8+ T cell epitopes. J Immunol 2008 ; 181 : 1563-1572. [PubMed] [Google Scholar]
  33. BrienJD, UhrlaubJL, Nikolich-ZugichJ. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol 2008 ; 181 : 8568-8575. [PubMed] [Google Scholar]
  34. LanteriMC, O’BrienKM, PurthaWE, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest 2009 ; 119 : 3266-3277. [PubMed] [Google Scholar]
  35. DiamondMS. Progress on the development of therapeutics against West Nile virus. Antiviral Res 2009 ; 83 : 214-227. [CrossRef] [PubMed] [Google Scholar]
  36. GuyB, GuirakhooF, BarbanV, et al. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 2010 ; 28 : 632-649. [CrossRef] [PubMed] [Google Scholar]
  37. MonathTP, LiuJ, Kanesa-ThasanN, et al. A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci USA 2006 ; 103 : 6694-6699. [CrossRef] [Google Scholar]
  38. LanteriMC, AssalA, NorrisPJ, BuschMP. Le virus West Nile. I. La conquête de l’Ouest. Med Sci (Paris) 2011 ; 27 : 375-381. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.