Accès gratuit
Numéro
Med Sci (Paris)
Volume 27, Numéro 4, Avril 2011
Page(s) 382 - 386
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2011274013
Publié en ligne 28 avril 2011
  1. RiceCM. Flaviviridae: the viruses and their replication, 3rd ed.Philadelphie : Lippincott-Raven Press, 1996. [Google Scholar]
  2. BarontiC, SireJ, de LamballerieX, QueratG. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology 2010 ; 404 : 319-330. [CrossRef] [PubMed] [Google Scholar]
  3. FalconarAK. Monoclonal antibodies that bind to common epitopes on the dengue virus type 2 nonstructural-1 and envelope glycoproteins display weak neutralizing activity and differentiated responses to virulent strains: implications for pathogenesis and vaccines. Clin Vaccine Immunol 2008 ; 15 : 549-561. [CrossRef] [PubMed] [Google Scholar]
  4. ZhouY, RayD, ZhaoY, et al. Structure and function of flavivirus NS5 methyltransferase. J Virol 2007 ; 81 : 3891-3903. [CrossRef] [PubMed] [Google Scholar]
  5. AshourJ, Laurent-RolleM, ShiPY, Garcia-SastreA. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 2009 ; 83 : 5408-5418. [CrossRef] [PubMed] [Google Scholar]
  6. EllencronaK, SyedA, JohanssonM. Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism. Biol Chem 2009 ; 390 : 319-323. [CrossRef] [PubMed] [Google Scholar]
  7. BrownAN, KentKA, BennettCJ, BernardKA. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 2007 ; 368 : 422-430. [CrossRef] [PubMed] [Google Scholar]
  8. PurthaWE, ChachuKA, VirginHWt, DiamondMS. Early B-cell activation after West Nile virus infection requires alpha/beta interferon but not antigen receptor signaling. J Virol 2008 ; 82 : 10964-10974. [CrossRef] [PubMed] [Google Scholar]
  9. SamuelMA, DiamondMS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 2006 ; 80 : 9349-9360. [CrossRef] [PubMed] [Google Scholar]
  10. WangP, DaiJ, BaiF, et al. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 2008 ; 82 : 8978-8985. [CrossRef] [PubMed] [Google Scholar]
  11. SamuelMA, WangH, SiddharthanV, et al. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci USA 2007 ; 104 : 17140-17145. [CrossRef] [Google Scholar]
  12. VermaS, LoY, ChapagainM, et al. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood-brain barrier. Virology 2009 ; 385 : 425-433. [CrossRef] [PubMed] [Google Scholar]
  13. SampsonBA, ArmbrustmacherV. West Nile encephalitis: the neuropathology of four fatalities. Ann NY Acad Sci 2001 ; 951 : 172-178. [CrossRef] [Google Scholar]
  14. SejvarJJ. The long-term outcomes of human West Nile virus infection. Clin Infect Dis 2007 ; 44 : 1617-1624. [CrossRef] [PubMed] [Google Scholar]
  15. LeisAA, StokicDS. Neuromuscular manifestations of human west nile virus infection. Curr Treat Options Neurol 2005 ; 7 : 15-22. [CrossRef] [PubMed] [Google Scholar]
  16. CarsonPJ, KonewkoP, WoldKS, et al. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin Infect Dis 2006 ; 43 : 723-730. [CrossRef] [PubMed] [Google Scholar]
  17. MurrayK, WalkerC, HerringtonE, et al. Persistent infection with West Nile virus years after initial infection. J Infect Dis 2010 ; 201 : 2-4. [CrossRef] [PubMed] [Google Scholar]
  18. JeanCM, HonarmandS, LouieJK, GlaserCA. Risk factors for West Nile virus neuroinvasive disease, California, 2005. Emerg Infect Dis 2007 ; 13 : 1918-1920. [PubMed] [Google Scholar]
  19. BuschMP, GlynnSA. Use of blood-donor and transfusion-recipient biospecimen repositories to address emerging blood-safety concerns and advance infectious disease research: the national heart, lung, and blood institute biologic specimen repository. J Infect Dis 2009 ; 199 : 1564-1566. [CrossRef] [PubMed] [Google Scholar]
  20. BuschMP, KleinmanSH, ToblerLH, et al. Virus and antibody dynamics in acute West Nile virus infection. J Infect Dis 2008 ; 198 : 984-993. [CrossRef] [PubMed] [Google Scholar]
  21. PrinceHE, ToblerLH, YehC, et al. Persistence of West Nile virus-specific antibodies in viremic blood donors. Clin Vaccine Immunol 2007 ; 14 : 1228-1230. [CrossRef] [PubMed] [Google Scholar]
  22. ToblerLH, CameronMJ, LanteriMC, et al. Interferon and interferon-induced chemokine expression is associated with control of acute viremia in West Nile virus-infected blood donors. J Infect Dis 2008 ; 198 : 979-983. [CrossRef] [PubMed] [Google Scholar]
  23. DaffisS, SamuelMA, SutharMS, et al. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol 2008 ; 82 : 8465-8475. [CrossRef] [PubMed] [Google Scholar]
  24. WangT, TownT, AlexopoulouL, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004 ; 10 : 1366-1373. [CrossRef] [PubMed] [Google Scholar]
  25. DaffisS, SamuelMA, SutharMS, et al. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 2008 ; 82 : 10349-10358. [CrossRef] [PubMed] [Google Scholar]
  26. Daffis S, Samuel MA, Keller BC, et al. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog 2007 ; 3 : e106. [CrossRef] [PubMed] [Google Scholar]
  27. WalidMS, MahmoudFA. Successful treatment with intravenous immunoglobulin of acute flaccid paralysis caused by west nile virus. Perm J 2009 ; 13 : 43-46. [PubMed] [Google Scholar]
  28. SitatiEM, DiamondMS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 2006 ; 80 : 12060-12069. [CrossRef] [PubMed] [Google Scholar]
  29. PurthaWE, MyersN, MitaksovV, et al. Antigen-specific cytotoxic T lymphocytes protect against lethal West Nile virus encephalitis. Eur J Immunol 2007 ; 37 : 1845-1854. [CrossRef] [PubMed] [Google Scholar]
  30. BrienJD, UhrlaubJL, Nikolich-ZugichJ. Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection. Eur J Immunol 2007 ; 37 : 1855-1863. [CrossRef] [PubMed] [Google Scholar]
  31. LanteriMC, HeitmanJW, OwenRE, et al. Comprehensive analysis of west nile virus-specific T cell responses in humans. J Infect Dis 2008 ; 197 : 1296-1306. [CrossRef] [PubMed] [Google Scholar]
  32. ParsonsR, LelicA, HayesL, et al. The memory T cell response to West Nile virus in symptomatic humans following natural infection is not influenced by age and is dominated by a restricted set of CD8+ T cell epitopes. J Immunol 2008 ; 181 : 1563-1572. [PubMed] [Google Scholar]
  33. BrienJD, UhrlaubJL, Nikolich-ZugichJ. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J Immunol 2008 ; 181 : 8568-8575. [PubMed] [Google Scholar]
  34. LanteriMC, O’BrienKM, PurthaWE, et al. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest 2009 ; 119 : 3266-3277. [PubMed] [Google Scholar]
  35. DiamondMS. Progress on the development of therapeutics against West Nile virus. Antiviral Res 2009 ; 83 : 214-227. [CrossRef] [PubMed] [Google Scholar]
  36. GuyB, GuirakhooF, BarbanV, et al. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 2010 ; 28 : 632-649. [CrossRef] [PubMed] [Google Scholar]
  37. MonathTP, LiuJ, Kanesa-ThasanN, et al. A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci USA 2006 ; 103 : 6694-6699. [CrossRef] [Google Scholar]
  38. LanteriMC, AssalA, NorrisPJ, BuschMP. Le virus West Nile. I. La conquête de l’Ouest. Med Sci (Paris) 2011 ; 27 : 375-381. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.