Free Access
Issue |
Med Sci (Paris)
Volume 27, Number 2, Février 2011
Représentation en sciences du vivant
|
|
---|---|---|
Page(s) | 208 - 213 | |
Section | Forum | |
DOI | https://doi.org/10.1051/medsci/2011272208 | |
Published online | 08 March 2011 |
- Duncan J, Ayache N. Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell 2000 ; 22 : 85-106. [CrossRef] [Google Scholar]
- Ayache N (ed). Computer vision, virtual reality and robotics in medicine. First international conference on computer vision, virtual reality and robotics in medicine, CVRMed’95. Lecture notes in computer science Berlin-Heidelberg : Springer-Verlag, 1995 : 568 p. [Google Scholar]
- Ayache N, Ourselin S, Maeder A. (eds). Medical image computing and computer-assisted intervention (MICCAI). Lecture notes in computer science, Berlin-Heidelberg : Springer-Verlag, 2007 : 1002 p. [Google Scholar]
- Ayache N, Delingette H, Sermesant M (eds). Functional imaging and modeling of the heart (FIMH). Lecture notes in computer science, Berlin-Heidelberg : Springer-Verlag : 2009, 538 p. [Google Scholar]
- Hunter PJ, Borg TK. Integration from proteins to organs: the physiome project. Nat Rev Mol Cell Biol 2003 ; 4 : 237-243. [CrossRef] [PubMed] [Google Scholar]
- Ayache N. (ed). Computational models for the human body In: Ciarlet P. ed. Handbook of numerical analysis. Amsterdam : Elsevier, 2004 : 670 p. [Google Scholar]
- Ayache N, Delingette H (eds). Surgery simulation and soft tissue modeling. Lecture notes in computer science. Berlin-Heidelberg : Springer-Verlag, 2003 : 386 p. [Google Scholar]
- Ayache N, Clatz O, Delingette H, et al. Asclepios: a research project-team at INRIA for the analysis and simulation of biomedical images. In : Bertot Y, Huet G, Lévy JJ, Plotkin G, eds. From semantics to computer science: essays in honor of Gilles Kahn. Cambridge : Cambridge University Press, 2009 : 415-436. [CrossRef] [Google Scholar]
- Pennec X, Joshi S (eds). Mathematical foundations of computational anatomy. Geometrical and statistical methods for modelling biological shape variability. 2006. http://www-sop.inria.fr/asclepios/Publications/Xavier.Pennec/MFCA06.pdf. [Google Scholar]
- Fillard P, Arsigny V, Pennec X, et al. Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines. Neuroimage 2007 ; 34 : 639-650. [CrossRef] [PubMed] [Google Scholar]
- Boisvert J, Cheriet F, Pennec X, et al. Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 2008 ; 27 : 557-568. [CrossRef] [PubMed] [Google Scholar]
- Clatz O, Sermesant M, Bondiau PY, et al.. Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with mass effect. IEEE Trans Med Imaging 2005 ; 24 : 1334-1346. [CrossRef] [PubMed] [Google Scholar]
- Konukoglu E, Clatz O, Menze BH, et al. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 2010 ; 29 : 77-95. [CrossRef] [PubMed] [Google Scholar]
- Konukoglu E, Clatz O, Bondiau PY, et al. Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 2010 ; 14 : 111-125. [CrossRef] [PubMed] [Google Scholar]
- Sainte-Marie J, Chapelle D, Cimrman R, Sorine M. Modeling and estimation of the cardiac electromechanical activity. Computers Structures 2006 ; 84 : 1743-1759. [CrossRef] [Google Scholar]
- Sermesant M, Delingette H, Ayache N. An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 2006 ; 25 : 612-625. [CrossRef] [PubMed] [Google Scholar]
- Billet F, Sermesant M, Delingette H, Ayache N. Cardiac motion recovery and boundary conditions estimation by coupling an electromechanical model and cine-MRI data. In : Ayache N, Delingette H, Sermesant M eds. Proceedings of functional imaging and modeling of the heart 2009 (FIMH 09). Lecture notes in computer science Berlin-Heidelberg : Springer-Verlag, 2009 : 376-385. [Google Scholar]
- Mansi T, André B, Lynch M. Virtual pulmonary valve replacement interventions with a personalized cardiac electromechanical model. Recent advances in the 3D physiological human. In : Ayache N, Ayache N, Delingette H, Sermesant M, eds. Proceedings of functional imaging and modeling of the heart 2009 (FIMH 09). Lecture notes in computer science. Berlin-Heidelberg : Springer-Verlag, 2009 : 201-210. [Google Scholar]
- Sermesant M, Billet F, Chabiniok R, et al. Personalized electromechanical model of the heart for the prediction of the acute effects of cardiac resynchronisation therapy. In : Ayache N, Delingette H, Sermesant M, eds. Proceedings of functional imaging and modeling of the heart 2009 (FIMH 09). Lecture notes in computer science. Berlin-Heidelberg : Springer-Verlag, 2009 : 239-248. [Google Scholar]
- Vercauteren T, Ayache N, Savoire N, et al. Processing of in vivo fibered confocal microscopy video sequences. In : Rittscher J, Machiraju R, Wong STC, eds. Microscopic image analysis for life science applications. Boston (London) : Artech House, 2008 : 441-463. [Google Scholar]
- Vercauteren T, Perchant A, Malandain G, et al. Robust mosaicing with correction of motion distortions and tissue deformation for in vivo fibered microscopy. Med Image Anal 2006 ; 10 : 673-692. [CrossRef] [PubMed] [Google Scholar]
- André B, Vercauteren T, Wallace MB, et al. Endomicroscopic video retrieval using mosaicing and visual words. In : Proceedings of the seventh IEEE International symposium on biomedical imaging 2010 (ISBI’10) 2010 ; 1419-1422. [CrossRef] [Google Scholar]
- Coatrieux JL, Velut J, Dillenseger JL, Toumoulin C. De l’imagerie médicale à la thérapie guidée par l’image. Med Sci (Paris) 2010 ; 26 : 1103-1109. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.