Free Access
Issue
Med Sci (Paris)
Volume 26, Number 1, Janvier 2010
Page(s) 89 - 94
Section M/S revues
DOI https://doi.org/10.1051/medsci/201026189
Published online 15 January 2010
  1. Moulin V, Goulet F, Berthod F, et al. Le génie tissulaire au service de la compréhension du vivant. Med Sci (Paris) 2003; 19 : 1003–10. [Google Scholar]
  2. Rhett JM, Ghatnekar GS, Palatinus JA, et al. Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol 2008 : 26 : 173–80. [Google Scholar]
  3. Gerbault O. Cicatrisation cutanée. In : Techniques chirurgicales. Chirurgie plastique reconstructrice et esthétique. Encycl Med Chir, Paris Elsevier 1999 : 45–010. [Google Scholar]
  4. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004; 359 : 839–50. [Google Scholar]
  5. Fournier N, Mordon S. Nonablative remodeling with a 1,540 nm erbium:glass laser. Dermatol Surg 2005; 31 : 1227–35. [Google Scholar]
  6. Tuan TL, Nichter LS. The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 1998; 4 : 19–24. [Google Scholar]
  7. Köse O, Waseem A. Keloids and hypertrophic scars: are they two different sides of the same coin ? Dermatol Surg 2008; 34 : 336–46. [Google Scholar]
  8. Senet P. Physiopathology of normal cutaneous cicatrization and in leg ulcer. Ann Dermatol Venereol 2001; suppl : 5–8. [Google Scholar]
  9. Vriz S. nAG sur la piste de la médecine régénérative. Med Sci (Paris) 2008; 24 : 244–5. [Google Scholar]
  10. Roy S, Levesque M. Limb regeneration in axolotl: is it superhealing ? Sci World J 2006; 6 (suppl 1) : 12–25. [Google Scholar]
  11. Aberdam D. Réparer ou régénérer, il faut choisir. Med Sci (Paris) 2007; 23 : 791–3. [Google Scholar]
  12. Kuo YR, Wu WS, Jeng SF, et al. Suppressed TGF-beta1 expression is correlated with up-regulation of matrix metalloproteinase-13 in keloid regression after flashlamp pulsed-dye laser treatment. Lasers Surg Med 2005; 36 : 38–42. [Google Scholar]
  13. Schrementi ME, Ferreira AM, Zender C, DiPietro LA. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen 2008; 16 : 80–6. [Google Scholar]
  14. Vozenin-Brotons MC, Mauviel A. Comment modéliser les événements de la fibrose cutanée ? Med Sci (Paris) 2006; 22 : 172–7. [Google Scholar]
  15. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453 : 314–21. [Google Scholar]
  16. Alster TS, West TB. Treatment of scars: a review. Ann Plast Surg 1997; 39 : 418–32. [Google Scholar]
  17. Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg 2002; 110 : 560–71. [Google Scholar]
  18. Aarabi S, Bhatt KA, Shi Y, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 2007; 21 : 3250–61. [Google Scholar]
  19. Capon AC, Gossé AR, Iarmarcovai GN, et al. Scar prevention by laser-assisted scar healing (LASH): a pilot study using an 810-nm diode-laser system. Lasers Surg Med 2008; 40 : 443–5. [Google Scholar]
  20. Abergel RP, Meeker CA, Dwyer RM, et al. Nonthermal effects of ND:YAG laser on biological functions of human skin fibroblasts in culture. Lasers Surg Med 1984; 3 : 279–84. [Google Scholar]
  21. Mordon SR, Martinot VL, Mitchell VA. End-to-end microvascular anastomoses with a 1.9µm diode laser. J Clin Laser Med Surg 1995; 13 : 357–61. [Google Scholar]
  22. Nouri K, Jimenez GP, Harrison-Balestra C, Elgart GW. 585-nm pulsed dye laser in the treatment of surgical scars starting on the suture removal day. Dermatol Surg 2003; 29 : 65–73. [Google Scholar]
  23. Conologue TD, Norwood C. Treatment of surgical scars with the cryogen-cooled 595 nm pulsed dye laser starting on the day of suture removal. Dermatol Surg 2006; 32 : 13–20. [Google Scholar]
  24. Capon A, Souil E, Gauthier B, et al. Laser assisted skin closure (LASC) by using a 815-nm diode-laser system accelerates and improves wound healing. Lasers Surg Med 2001; 28 : 168–75. [Google Scholar]
  25. Souil E, Capon A, Mordon S, et al. Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 2001; 144 : 260–6. [Google Scholar]
  26. Klosterhalfen B, Klinge U, Tietze L, et al. Expression of heat shock protein 70 (HSP70) at the interface of polymer-implants in vivo. J Mater Sci Mater Med 2000; 11 : 175–81. [Google Scholar]
  27. Shukla A, Dubey MP, Srivastava R, Srivastava BS. Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem Biophys Res Commun 1998; 244 : 434–9. [Google Scholar]
  28. Oberringer M, Baum HP, Jung V, et al. Differential expression of heat shock protein 70 in well healing and chronic human wound tissue. Biochem Biophys Res Commun 1995; 214 : 1009–14. [Google Scholar]
  29. Atalay M, Oksala N, Lappalainen J, et al. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci 2009; 10 : 85–95. [Google Scholar]
  30. Capon, A. Suture cutanée assistée par laser : étude des mécanismes d’accélération de la cicatrisation sur modèle animal et sur peau humaine. In : École doctorale biologie santé. Lille : Université de Lille 2, 2003. [Google Scholar]
  31. Wilmink GJ, Opalenik SR, Beckham JT, et al. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol 2009; 129 : 205–16. [Google Scholar]
  32. Capon A, Mordon S. Can thermal lasers promote skin wound healing ? Am J Clin Dermatol 2003; 4 : 1–12. [Google Scholar]
  33. Hantash BM, Ubeid AA, Chang H, Kafi R, Renton B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med 2009; 41 : 1–9. [Google Scholar]
  34. Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994; 107 : 1137–57. [Google Scholar]
  35. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108 : 985–1002. [Google Scholar]
  36. Fournier N, et al. Ultrastructural changes elicited by laser-assisted skin healing using an 810nm diode-laser system. In : 29th Annual meeting of The American Society for laser Medicine and Surgery. Washington, USA : Lasers in Surgery and Medicine, 2009. [Google Scholar]
  37. Abergel RP, Pizzurro D, Meeker CA, et al. Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 1985; 84 : 384–90. [Google Scholar]
  38. Uitto J, Perejda AJ, Abergel RP, et al. Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci USA 1985; 82 : 5935–9. [Google Scholar]
  39. Friedman DW, Boyd CD, Mackenzie JW, et al. Regulation of collagen gene expression in keloids and hypertrophic scars. J Surg Res 1993; 55 : 214–22. [Google Scholar]
  40. Wolfram D, Tzankov A, Pülzl P, Piza-Katzer H. Hypertrophic scars and keloids: a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg 2009; 35 : 171–81. [Google Scholar]
  41. David-Raoudi M, Tranchepain F, Deschrevel B, et al. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 2008; 16 : 274–87. [Google Scholar]
  42. Cuttle L, Nataatmadja M, Fraser JF, et al. Collagen in the scarless fetal skin wound: detection with picrosirius-polarization. Wound Repair Regen 2005; 13 : 198–204. [Google Scholar]
  43. Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med 2006; 38 : 142–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.