Free Access
Issue
Med Sci (Paris)
Volume 26, Number 1, Janvier 2010
Page(s) 83 - 88
Section M/S revues
DOI https://doi.org/10.1051/medsci/201026183
Published online 15 January 2010
  1. Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25 : 677–86. [Google Scholar]
  2. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3 : 23–35. [Google Scholar]
  3. Benoît M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008; 181 : 3733–9. [Google Scholar]
  4. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation Nat Rev Immunol 2008; 8 : 958–69. [Google Scholar]
  5. Fernandez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177 : 7303–11. [Google Scholar]
  6. Jenner RG, Young RA. Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 2005; 3 : 281–94. [Google Scholar]
  7. Boldrick JC, Alizadeh AA, Diehn M, et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 2002; 99 : 972–7. [Google Scholar]
  8. Nau GJ, Richmond JF, Schlesinger A, et al. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 2002; 99 : 1503–8. [Google Scholar]
  9. Shaughnessy LM, Swanson JA. The role of the activated macrophage in clearing Listeria monocytogenes infection. Front Biosci 2007; 12 : 2683–92. [Google Scholar]
  10. Bozza FA, Salluh JI, Japiassu AM, et al. 2007. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 2007; 11 : R49. [Google Scholar]
  11. Kadioglu A, Andrew PW. The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol 2004; 25 : 143–9. [Google Scholar]
  12. Goldmann, O., von Kockritz-Blickwede M, Holtje C, et al. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 2007; 75 : 4148–57. [Google Scholar]
  13. Smith MW, Schmidt JE, Rehg JE, et al. Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med 2007; 57 : 82–9. [Google Scholar]
  14. Vazquez-Torres A, Xu Y, Jones-Carson J, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 2000; 287 : 1655–8. [Google Scholar]
  15. Miller BH, Fratti RA, Poschet JF, et al. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun 2004; 72 : 2872–8. [Google Scholar]
  16. Bost KL, Clements JD. Intracellular Salmonella dublin induces substantial secretion of the 40-kilodalton subunit of interleukin-12 (IL-12) but minimal secretion of IL-12 as a 70-kilodalton protein in murine macrophages. Infect Immun 1997; 65 : 3186–92. [Google Scholar]
  17. Dornand J, Gross A, Lafont V, et al. The innate immune response against Brucella in humans. Vet Microbiol 2002; 90 : 383–94. [Google Scholar]
  18. Pathak SK, Basu S, Basu KK, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 2007; 8 : 610–8. [Google Scholar]
  19. Ting LM, Kim AC, Cattamanchi A, et al. Mycobacterium tuberculosis inhibits IFN-g transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163 : 3898–906. [Google Scholar]
  20. Nagabhushanam V, Solache A, Ting LM, et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-g. J Immunol 2003; 171 : 4750–7. [Google Scholar]
  21. Hoffmann R, van Erp K, Trulzsch K, et al. Transcriptional responses of murine macrophages to infection with Yersinia enterocolitica. Cell Microbiol 2004; 6 : 377–90. [Google Scholar]
  22. Benoit M, Barbarat B, Bernard A, et al. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 2008; 38 : 1065–70. [Google Scholar]
  23. Fernandes DM, Jiang X, Jung JH, et al. Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol Med Microbiol 1996; 16 : 193–203. [Google Scholar]
  24. Kiszewski AE, Becerril E, Aguilar LD, et al. The local immune response in ulcerative lesions of Buruli disease. Clin Exp Immunol 2006; 143 : 445–51. [Google Scholar]
  25. Bleharski JR, Li H, Meinken C, et al. Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science 2003; 301 : 1527–30. [Google Scholar]
  26. Desnues B, Raoult D, Mege JL. IL-16 is critical for Tropheryma whipplei replication in Whipple’s disease. J Immunol 2005; 175 : 4575–82. [Google Scholar]
  27. Desnues B, Lepidi H, Raoult D, et al. Whipple disease: intestinal infiltrating cells exhibit a transcriptional pattern of M2/alternatively activated macrophages. J Infect Dis 2005; : 1642–6. [Google Scholar]
  28. Meghari S, Bechah Y, Capo C, et al. 2008. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 2008; 4 : e23. [Google Scholar]
  29. Meghari S, Berruyer C, Lepidi H, et al. Vanin-1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection. Eur J Immunol 2007; 37 : 24–32. [Google Scholar]
  30. Benoit M, Ghigo E, Capo C, et al. The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: a model for Q fever endocarditis. PLoS Pathog 2008; 4 : e1000066. [Google Scholar]
  31. Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle. Structure et fonction des Toll-like receptors. Med Sci (Paris) 2007; 23 : 67–73. [Google Scholar]
  32. Chazaud B, Chrétien F, Gherardi RK. Les macrophages régulent les différentes phases de la régénération musculaire. Med Sci (Paris) 2007; 23 : 794–7 [Google Scholar]
  33. Combadière B, Combadière C, Deterre P. Les chimiokines : un réseau sophistiqué de guidage cellulaire. Med Sci (Paris) 2007; 23 : 173–9. [Google Scholar]
  34. Marsollier L, Aubry J, Milon G, Brodin P. Punaises aquatiques et transmission de Mycobacterium ulcerans. Med Sci (Paris) 2007; 23 : 572–5. [Google Scholar]
  35. Aloulou M, Pinheiro da Silva F, Skurnik D, et al. Rôle néfaste du récepteur CD16 dans le sepsis. Med Sci 2008; 24 : 231–3. [Google Scholar]
  36. Salez L, Malo D. Protagonistes de l’immunité innée dans les infections à salmonelles. Med Sci (Paris) 2004; 20 : 1119–24. [Google Scholar]
  37. Pascussi JM, Vilarem MJ. Inflammation et métabolisme des médicaments. NF-kB et les xénorécepteurs CAR et PXR. Med Sci (Paris) 2008; 24 : 301–5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.