Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 1, Janvier 2010
Page(s) 83 - 88
Section M/S revues
DOI https://doi.org/10.1051/medsci/201026183
Publié en ligne 15 janvier 2010
  1. Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25 : 677–86. [Google Scholar]
  2. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3 : 23–35. [Google Scholar]
  3. Benoît M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol 2008; 181 : 3733–9. [Google Scholar]
  4. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation Nat Rev Immunol 2008; 8 : 958–69. [Google Scholar]
  5. Fernandez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177 : 7303–11. [Google Scholar]
  6. Jenner RG, Young RA. Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 2005; 3 : 281–94. [Google Scholar]
  7. Boldrick JC, Alizadeh AA, Diehn M, et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 2002; 99 : 972–7. [Google Scholar]
  8. Nau GJ, Richmond JF, Schlesinger A, et al. Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 2002; 99 : 1503–8. [Google Scholar]
  9. Shaughnessy LM, Swanson JA. The role of the activated macrophage in clearing Listeria monocytogenes infection. Front Biosci 2007; 12 : 2683–92. [Google Scholar]
  10. Bozza FA, Salluh JI, Japiassu AM, et al. 2007. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 2007; 11 : R49. [Google Scholar]
  11. Kadioglu A, Andrew PW. The innate immune response to pneumococcal lung infection: the untold story. Trends Immunol 2004; 25 : 143–9. [Google Scholar]
  12. Goldmann, O., von Kockritz-Blickwede M, Holtje C, et al. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 2007; 75 : 4148–57. [Google Scholar]
  13. Smith MW, Schmidt JE, Rehg JE, et al. Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med 2007; 57 : 82–9. [Google Scholar]
  14. Vazquez-Torres A, Xu Y, Jones-Carson J, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 2000; 287 : 1655–8. [Google Scholar]
  15. Miller BH, Fratti RA, Poschet JF, et al. Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infect Immun 2004; 72 : 2872–8. [Google Scholar]
  16. Bost KL, Clements JD. Intracellular Salmonella dublin induces substantial secretion of the 40-kilodalton subunit of interleukin-12 (IL-12) but minimal secretion of IL-12 as a 70-kilodalton protein in murine macrophages. Infect Immun 1997; 65 : 3186–92. [Google Scholar]
  17. Dornand J, Gross A, Lafont V, et al. The innate immune response against Brucella in humans. Vet Microbiol 2002; 90 : 383–94. [Google Scholar]
  18. Pathak SK, Basu S, Basu KK, et al. Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 2007; 8 : 610–8. [Google Scholar]
  19. Ting LM, Kim AC, Cattamanchi A, et al. Mycobacterium tuberculosis inhibits IFN-g transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163 : 3898–906. [Google Scholar]
  20. Nagabhushanam V, Solache A, Ting LM, et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-g. J Immunol 2003; 171 : 4750–7. [Google Scholar]
  21. Hoffmann R, van Erp K, Trulzsch K, et al. Transcriptional responses of murine macrophages to infection with Yersinia enterocolitica. Cell Microbiol 2004; 6 : 377–90. [Google Scholar]
  22. Benoit M, Barbarat B, Bernard A, et al. Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 2008; 38 : 1065–70. [Google Scholar]
  23. Fernandes DM, Jiang X, Jung JH, et al. Comparison of T cell cytokines in resistant and susceptible mice infected with virulent Brucella abortus strain 2308. FEMS Immunol Med Microbiol 1996; 16 : 193–203. [Google Scholar]
  24. Kiszewski AE, Becerril E, Aguilar LD, et al. The local immune response in ulcerative lesions of Buruli disease. Clin Exp Immunol 2006; 143 : 445–51. [Google Scholar]
  25. Bleharski JR, Li H, Meinken C, et al. Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science 2003; 301 : 1527–30. [Google Scholar]
  26. Desnues B, Raoult D, Mege JL. IL-16 is critical for Tropheryma whipplei replication in Whipple’s disease. J Immunol 2005; 175 : 4575–82. [Google Scholar]
  27. Desnues B, Lepidi H, Raoult D, et al. Whipple disease: intestinal infiltrating cells exhibit a transcriptional pattern of M2/alternatively activated macrophages. J Infect Dis 2005; : 1642–6. [Google Scholar]
  28. Meghari S, Bechah Y, Capo C, et al. 2008. Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 2008; 4 : e23. [Google Scholar]
  29. Meghari S, Berruyer C, Lepidi H, et al. Vanin-1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection. Eur J Immunol 2007; 37 : 24–32. [Google Scholar]
  30. Benoit M, Ghigo E, Capo C, et al. The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: a model for Q fever endocarditis. PLoS Pathog 2008; 4 : e1000066. [Google Scholar]
  31. Delneste Y, Beauvillain C, Jeannin P. Immunité naturelle. Structure et fonction des Toll-like receptors. Med Sci (Paris) 2007; 23 : 67–73. [Google Scholar]
  32. Chazaud B, Chrétien F, Gherardi RK. Les macrophages régulent les différentes phases de la régénération musculaire. Med Sci (Paris) 2007; 23 : 794–7 [Google Scholar]
  33. Combadière B, Combadière C, Deterre P. Les chimiokines : un réseau sophistiqué de guidage cellulaire. Med Sci (Paris) 2007; 23 : 173–9. [Google Scholar]
  34. Marsollier L, Aubry J, Milon G, Brodin P. Punaises aquatiques et transmission de Mycobacterium ulcerans. Med Sci (Paris) 2007; 23 : 572–5. [Google Scholar]
  35. Aloulou M, Pinheiro da Silva F, Skurnik D, et al. Rôle néfaste du récepteur CD16 dans le sepsis. Med Sci 2008; 24 : 231–3. [Google Scholar]
  36. Salez L, Malo D. Protagonistes de l’immunité innée dans les infections à salmonelles. Med Sci (Paris) 2004; 20 : 1119–24. [Google Scholar]
  37. Pascussi JM, Vilarem MJ. Inflammation et métabolisme des médicaments. NF-kB et les xénorécepteurs CAR et PXR. Med Sci (Paris) 2008; 24 : 301–5. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.