Accès gratuit
Numéro
Med Sci (Paris)
Volume 26, Numéro 1, Janvier 2010
Page(s) 89 - 94
Section M/S revues
DOI https://doi.org/10.1051/medsci/201026189
Publié en ligne 15 janvier 2010
  1. Moulin V, Goulet F, Berthod F, et al. Le génie tissulaire au service de la compréhension du vivant. Med Sci (Paris) 2003; 19 : 1003–10. [Google Scholar]
  2. Rhett JM, Ghatnekar GS, Palatinus JA, et al. Novel therapies for scar reduction and regenerative healing of skin wounds. Trends Biotechnol 2008 : 26 : 173–80. [Google Scholar]
  3. Gerbault O. Cicatrisation cutanée. In : Techniques chirurgicales. Chirurgie plastique reconstructrice et esthétique. Encycl Med Chir, Paris Elsevier 1999 : 45–010. [Google Scholar]
  4. Ferguson MW, O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004; 359 : 839–50. [Google Scholar]
  5. Fournier N, Mordon S. Nonablative remodeling with a 1,540 nm erbium:glass laser. Dermatol Surg 2005; 31 : 1227–35. [Google Scholar]
  6. Tuan TL, Nichter LS. The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 1998; 4 : 19–24. [Google Scholar]
  7. Köse O, Waseem A. Keloids and hypertrophic scars: are they two different sides of the same coin ? Dermatol Surg 2008; 34 : 336–46. [Google Scholar]
  8. Senet P. Physiopathology of normal cutaneous cicatrization and in leg ulcer. Ann Dermatol Venereol 2001; suppl : 5–8. [Google Scholar]
  9. Vriz S. nAG sur la piste de la médecine régénérative. Med Sci (Paris) 2008; 24 : 244–5. [Google Scholar]
  10. Roy S, Levesque M. Limb regeneration in axolotl: is it superhealing ? Sci World J 2006; 6 (suppl 1) : 12–25. [Google Scholar]
  11. Aberdam D. Réparer ou régénérer, il faut choisir. Med Sci (Paris) 2007; 23 : 791–3. [Google Scholar]
  12. Kuo YR, Wu WS, Jeng SF, et al. Suppressed TGF-beta1 expression is correlated with up-regulation of matrix metalloproteinase-13 in keloid regression after flashlamp pulsed-dye laser treatment. Lasers Surg Med 2005; 36 : 38–42. [Google Scholar]
  13. Schrementi ME, Ferreira AM, Zender C, DiPietro LA. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen 2008; 16 : 80–6. [Google Scholar]
  14. Vozenin-Brotons MC, Mauviel A. Comment modéliser les événements de la fibrose cutanée ? Med Sci (Paris) 2006; 22 : 172–7. [Google Scholar]
  15. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453 : 314–21. [Google Scholar]
  16. Alster TS, West TB. Treatment of scars: a review. Ann Plast Surg 1997; 39 : 418–32. [Google Scholar]
  17. Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg 2002; 110 : 560–71. [Google Scholar]
  18. Aarabi S, Bhatt KA, Shi Y, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 2007; 21 : 3250–61. [Google Scholar]
  19. Capon AC, Gossé AR, Iarmarcovai GN, et al. Scar prevention by laser-assisted scar healing (LASH): a pilot study using an 810-nm diode-laser system. Lasers Surg Med 2008; 40 : 443–5. [Google Scholar]
  20. Abergel RP, Meeker CA, Dwyer RM, et al. Nonthermal effects of ND:YAG laser on biological functions of human skin fibroblasts in culture. Lasers Surg Med 1984; 3 : 279–84. [Google Scholar]
  21. Mordon SR, Martinot VL, Mitchell VA. End-to-end microvascular anastomoses with a 1.9µm diode laser. J Clin Laser Med Surg 1995; 13 : 357–61. [Google Scholar]
  22. Nouri K, Jimenez GP, Harrison-Balestra C, Elgart GW. 585-nm pulsed dye laser in the treatment of surgical scars starting on the suture removal day. Dermatol Surg 2003; 29 : 65–73. [Google Scholar]
  23. Conologue TD, Norwood C. Treatment of surgical scars with the cryogen-cooled 595 nm pulsed dye laser starting on the day of suture removal. Dermatol Surg 2006; 32 : 13–20. [Google Scholar]
  24. Capon A, Souil E, Gauthier B, et al. Laser assisted skin closure (LASC) by using a 815-nm diode-laser system accelerates and improves wound healing. Lasers Surg Med 2001; 28 : 168–75. [Google Scholar]
  25. Souil E, Capon A, Mordon S, et al. Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 2001; 144 : 260–6. [Google Scholar]
  26. Klosterhalfen B, Klinge U, Tietze L, et al. Expression of heat shock protein 70 (HSP70) at the interface of polymer-implants in vivo. J Mater Sci Mater Med 2000; 11 : 175–81. [Google Scholar]
  27. Shukla A, Dubey MP, Srivastava R, Srivastava BS. Differential expression of proteins during healing of cutaneous wounds in experimental normal and chronic models. Biochem Biophys Res Commun 1998; 244 : 434–9. [Google Scholar]
  28. Oberringer M, Baum HP, Jung V, et al. Differential expression of heat shock protein 70 in well healing and chronic human wound tissue. Biochem Biophys Res Commun 1995; 214 : 1009–14. [Google Scholar]
  29. Atalay M, Oksala N, Lappalainen J, et al. Heat shock proteins in diabetes and wound healing. Curr Protein Pept Sci 2009; 10 : 85–95. [Google Scholar]
  30. Capon, A. Suture cutanée assistée par laser : étude des mécanismes d’accélération de la cicatrisation sur modèle animal et sur peau humaine. In : École doctorale biologie santé. Lille : Université de Lille 2, 2003. [Google Scholar]
  31. Wilmink GJ, Opalenik SR, Beckham JT, et al. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol 2009; 129 : 205–16. [Google Scholar]
  32. Capon A, Mordon S. Can thermal lasers promote skin wound healing ? Am J Clin Dermatol 2003; 4 : 1–12. [Google Scholar]
  33. Hantash BM, Ubeid AA, Chang H, Kafi R, Renton B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med 2009; 41 : 1–9. [Google Scholar]
  34. Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci 1994; 107 : 1137–57. [Google Scholar]
  35. Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108 : 985–1002. [Google Scholar]
  36. Fournier N, et al. Ultrastructural changes elicited by laser-assisted skin healing using an 810nm diode-laser system. In : 29th Annual meeting of The American Society for laser Medicine and Surgery. Washington, USA : Lasers in Surgery and Medicine, 2009. [Google Scholar]
  37. Abergel RP, Pizzurro D, Meeker CA, et al. Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 1985; 84 : 384–90. [Google Scholar]
  38. Uitto J, Perejda AJ, Abergel RP, et al. Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci USA 1985; 82 : 5935–9. [Google Scholar]
  39. Friedman DW, Boyd CD, Mackenzie JW, et al. Regulation of collagen gene expression in keloids and hypertrophic scars. J Surg Res 1993; 55 : 214–22. [Google Scholar]
  40. Wolfram D, Tzankov A, Pülzl P, Piza-Katzer H. Hypertrophic scars and keloids: a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg 2009; 35 : 171–81. [Google Scholar]
  41. David-Raoudi M, Tranchepain F, Deschrevel B, et al. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 2008; 16 : 274–87. [Google Scholar]
  42. Cuttle L, Nataatmadja M, Fraser JF, et al. Collagen in the scarless fetal skin wound: detection with picrosirius-polarization. Wound Repair Regen 2005; 13 : 198–204. [Google Scholar]
  43. Laubach HJ, Tannous Z, Anderson RR, Manstein D. Skin responses to fractional photothermolysis. Lasers Surg Med 2006; 38 : 142–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.