Free Access
Issue
Med Sci (Paris)
Volume 25, Number 12, Décembre 2009
Anticorps monoclonaux en thérapeutique
Page(s) 1090 - 1098
Section II - La réalité clinique
DOI https://doi.org/10.1051/medsci/200925121090
Published online 15 December 2009
  1. Hudis CA. Trastuzumab mechanism of action and use in clinical practice. N Engl J Med 2007; 357 : 39–51. [Google Scholar]
  2. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244 : 707–12. [Google Scholar]
  3. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2 overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17 : 2639–48. [Google Scholar]
  4. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20 : 719–26. [Google Scholar]
  5. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl Med 2001; 344 : 783–92. [Google Scholar]
  6. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353 : 1673–84. [Google Scholar]
  7. Piccart-Gebhart M, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353 : 1659–72. [Google Scholar]
  8. Buzdar AU, Valero V, Ibrahim NK, et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in huma epidermal growth factor receptor 2-positive operable breast cancer : an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 2007; 13 : 228–33. [Google Scholar]
  9. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspective in HER2-overexpressing breast cancer. Ann Oncol 2007; 18 : 977–84. [Google Scholar]
  10. Van Custem E, Kang Y, Chung H, et al. Efficacy results from the ToGA trials: a phase III study of trastuzumab added to standard chemotherapy in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer. J Clin Oncol 2009; 27 : 18S (abstract LBA4509). [Google Scholar]
  11. Ciardello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008; 358 : 1160–74. [Google Scholar]
  12. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351 : 337–45. [Google Scholar]
  13. Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007; 357 : 2040–8. [Google Scholar]
  14. Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360 : 1408–17. [Google Scholar]
  15. Tol J, Koopman M, Cats A, Rodenburg CJ, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360 : 563–72. [Google Scholar]
  16. Bonner JA, Harari PM, Giralt J, et al Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354 : 567–78. [Google Scholar]
  17. Vermorken JB, Mesia R, Rivera F, et al.Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008; 359 : 1116–27. [Google Scholar]
  18. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359 : 1757–65. [Google Scholar]
  19. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5 : 2503–12. [Google Scholar]
  20. Soos MA, Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J 1989; 263 : 553–63. [Google Scholar]
  21. Kato H, Faria TN, Stannard B, et al. Essential role of tyrosine residues 1131, 1135, and 1136 of the insulin-like growth factor-I (IGF-I) receptor in IGF-I action. Mol Endocrinol 1994; 8 : 40–50. [Google Scholar]
  22. Sell C, Dumenil G, Deveaud C, et al. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994; 14 : 3604–12. [Google Scholar]
  23. Baserga R, Hongo A, Rubini M, et al. The IGF-I receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta 1997; 1332 : F105-F126. [Google Scholar]
  24. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93 : 1852–7. [Google Scholar]
  25. Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 2008; 118 : 2609–19. [Google Scholar]
  26. Goetsch L, Gonzalez A, Leger O, et al. A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 2005; 113 : 316–28. [Google Scholar]
  27. Burtrum D, Zhu Z, Lu D, et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 2003; 63 : 8912–21. [Google Scholar]
  28. Schnitzer T, Kuenkele KP, Rebers F, et al. Characterization of a recombinant, fully human monoclonal antibody directed against the human insulin-like growth factor-1 receptor. Eur J Cancer 2006; 4 (suppl) : 66–7. [Google Scholar]
  29. Beltran PJ, Mitchell P, Moody G, et al.AMG-479, a fully human anti IGF-1 receptor antibody, inhibits PI3K/Akt signaling and exerts potent antitumor effects in combination with EGF-R inhibitors in pancreatic xenograft models. Orlando (Fl-USA) : Gastrointestinal Cancers Symposium, 2007. [Google Scholar]
  30. Loo D, Pryer N, Young P, et al. The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenograftsin vivo.Mol Cancer Ther 2007; 6 : 856–65. [Google Scholar]
  31. Wang Y, Hailey J, Williams D, et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 2005; 4 : 1214–21. [Google Scholar]
  32. Hariharan K, Dong J, Demarest S, et al. BIIB022, a fully human nonglycosylated g4P antibody targeting IGF-1R for cancer therapy. Houston (TX-USA) : AACR Meeting Abstracts (3 Molecular Targets Meeting), 2007 : B210. [Google Scholar]
  33. Cohen BD, Baker DA, Soderstrom C, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005; 11 : 2063–73. [Google Scholar]
  34. Resnicoff M. Antitumor effects elicited by antisense-mediated downregulation of the insulin-like growth factor I receptor. Int J Mol Med 1998; 1 : 883–8. [Google Scholar]
  35. Sachdev D, Singh R, Fujita-Yamaguchi Y, Yee D. Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res 2006; 66 : 2391–2402. [Google Scholar]
  36. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316 : 1039–43. [Google Scholar]
  37. Shattuck DL, Miller JK, Carraway KL, III, Sweeney C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 2008; 68 : 1471–7. [Google Scholar]
  38. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7 : 504–16. [Google Scholar]
  39. Martens T, Schmidt NO, Eckerich C, et al. Novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo Clin Cancer Res 2006; 12 : 6144–52. [Google Scholar]
  40. Goetsch L, Lepecquet AM, Geronimi F, et al.First bivalent fully antagonist anti-c-Met antibody targeting the c-Met receptor: II) in vivo activityDenver (Colorado-USA) : AACR 100th Meeting, 2009 (abstract 2792). [Google Scholar]
  41. Corvaïa N, Gonzalez A, Boute N, et al. First bivalent fully antagonist anti-c-Met antibody targeting the c-Met receptor: I) in vitro mechanism of action. Denver (Colorado-USA) : AACR 100th Meeting, 2009 (abstract 835). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.