Accès gratuit
Med Sci (Paris)
Volume 25, Numéro 12, Décembre 2009
Anticorps monoclonaux en thérapeutique
Page(s) 1090 - 1098
Section II - La réalité clinique
Publié en ligne 15 décembre 2009
  1. Hudis CA. Trastuzumab mechanism of action and use in clinical practice. N Engl J Med 2007; 357 : 39–51. [Google Scholar]
  2. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244 : 707–12. [Google Scholar]
  3. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2 overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17 : 2639–48. [Google Scholar]
  4. Vogel CL, Cobleigh MA, Tripathy D, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20 : 719–26. [Google Scholar]
  5. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl Med 2001; 344 : 783–92. [Google Scholar]
  6. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353 : 1673–84. [Google Scholar]
  7. Piccart-Gebhart M, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353 : 1659–72. [Google Scholar]
  8. Buzdar AU, Valero V, Ibrahim NK, et al. Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in huma epidermal growth factor receptor 2-positive operable breast cancer : an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 2007; 13 : 228–33. [Google Scholar]
  9. Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspective in HER2-overexpressing breast cancer. Ann Oncol 2007; 18 : 977–84. [Google Scholar]
  10. Van Custem E, Kang Y, Chung H, et al. Efficacy results from the ToGA trials: a phase III study of trastuzumab added to standard chemotherapy in first-line human epidermal growth factor receptor 2 (HER2)-positive advanced gastric cancer. J Clin Oncol 2009; 27 : 18S (abstract LBA4509). [Google Scholar]
  11. Ciardello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008; 358 : 1160–74. [Google Scholar]
  12. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351 : 337–45. [Google Scholar]
  13. Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer. N Engl J Med 2007; 357 : 2040–8. [Google Scholar]
  14. Van Cutsem E, Köhne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360 : 1408–17. [Google Scholar]
  15. Tol J, Koopman M, Cats A, Rodenburg CJ, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360 : 563–72. [Google Scholar]
  16. Bonner JA, Harari PM, Giralt J, et al Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006; 354 : 567–78. [Google Scholar]
  17. Vermorken JB, Mesia R, Rivera F, et al.Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 2008; 359 : 1116–27. [Google Scholar]
  18. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359 : 1757–65. [Google Scholar]
  19. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5 : 2503–12. [Google Scholar]
  20. Soos MA, Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J 1989; 263 : 553–63. [Google Scholar]
  21. Kato H, Faria TN, Stannard B, et al. Essential role of tyrosine residues 1131, 1135, and 1136 of the insulin-like growth factor-I (IGF-I) receptor in IGF-I action. Mol Endocrinol 1994; 8 : 40–50. [Google Scholar]
  22. Sell C, Dumenil G, Deveaud C, et al. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994; 14 : 3604–12. [Google Scholar]
  23. Baserga R, Hongo A, Rubini M, et al. The IGF-I receptor in cell growth, transformation and apoptosis. Biochim Biophys Acta 1997; 1332 : F105-F126. [Google Scholar]
  24. Lu Y, Zi X, Zhao Y, et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 2001; 93 : 1852–7. [Google Scholar]
  25. Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 2008; 118 : 2609–19. [Google Scholar]
  26. Goetsch L, Gonzalez A, Leger O, et al. A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 2005; 113 : 316–28. [Google Scholar]
  27. Burtrum D, Zhu Z, Lu D, et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 2003; 63 : 8912–21. [Google Scholar]
  28. Schnitzer T, Kuenkele KP, Rebers F, et al. Characterization of a recombinant, fully human monoclonal antibody directed against the human insulin-like growth factor-1 receptor. Eur J Cancer 2006; 4 (suppl) : 66–7. [Google Scholar]
  29. Beltran PJ, Mitchell P, Moody G, et al.AMG-479, a fully human anti IGF-1 receptor antibody, inhibits PI3K/Akt signaling and exerts potent antitumor effects in combination with EGF-R inhibitors in pancreatic xenograft models. Orlando (Fl-USA) : Gastrointestinal Cancers Symposium, 2007. [Google Scholar]
  30. Loo D, Pryer N, Young P, et al. The glycotope-specific RAV12 monoclonal antibody induces oncosis in vitro and has antitumor activity against gastrointestinal adenocarcinoma tumor xenograftsin vivo.Mol Cancer Ther 2007; 6 : 856–65. [Google Scholar]
  31. Wang Y, Hailey J, Williams D, et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 2005; 4 : 1214–21. [Google Scholar]
  32. Hariharan K, Dong J, Demarest S, et al. BIIB022, a fully human nonglycosylated g4P antibody targeting IGF-1R for cancer therapy. Houston (TX-USA) : AACR Meeting Abstracts (3 Molecular Targets Meeting), 2007 : B210. [Google Scholar]
  33. Cohen BD, Baker DA, Soderstrom C, et al. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 2005; 11 : 2063–73. [Google Scholar]
  34. Resnicoff M. Antitumor effects elicited by antisense-mediated downregulation of the insulin-like growth factor I receptor. Int J Mol Med 1998; 1 : 883–8. [Google Scholar]
  35. Sachdev D, Singh R, Fujita-Yamaguchi Y, Yee D. Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res 2006; 66 : 2391–2402. [Google Scholar]
  36. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316 : 1039–43. [Google Scholar]
  37. Shattuck DL, Miller JK, Carraway KL, III, Sweeney C. Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 2008; 68 : 1471–7. [Google Scholar]
  38. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 2008; 7 : 504–16. [Google Scholar]
  39. Martens T, Schmidt NO, Eckerich C, et al. Novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo Clin Cancer Res 2006; 12 : 6144–52. [Google Scholar]
  40. Goetsch L, Lepecquet AM, Geronimi F, et al.First bivalent fully antagonist anti-c-Met antibody targeting the c-Met receptor: II) in vivo activityDenver (Colorado-USA) : AACR 100th Meeting, 2009 (abstract 2792). [Google Scholar]
  41. Corvaïa N, Gonzalez A, Boute N, et al. First bivalent fully antagonist anti-c-Met antibody targeting the c-Met receptor: I) in vitro mechanism of action. Denver (Colorado-USA) : AACR 100th Meeting, 2009 (abstract 835). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.