Free Access
Issue
Med Sci (Paris)
Volume 25, Number 10, Octobre 2009
Page(s) 821 - 825
Section M/S revues
DOI https://doi.org/10.1051/medsci/20092510821
Published online 15 October 2009
  1. Hurowitz EH, Melnyk JM, Chen YJ, et al. Genomic characterization of the human heterotrimeric G protein α, β and γ subunit genes. DNA Res 2000; 7 : 111–20. [Google Scholar]
  2. Schmidt CJ, Thomas TC, Levine MA, Neer EJ. Specificity of G protein b and g subunit interactions. J Biol Chem 1992; 267 : 13807–10. [Google Scholar]
  3. Hildebrandt JD, Codina J, Risinger R, Birnbaumer L. Identification of a g subunit associated with the adenylyl cyclase regulatory proteins Ns and Ni. J Biol Chem 1984; 259 : 2039–42. [Google Scholar]
  4. Schmidt CJ, Neer EJ. In vitro synthesis of G protein βγ dimers. J BiolChem 1991; 266 : 4538–44. [Google Scholar]
  5. Mende U, Schmidt CJ, Yi F, et a. The G protein γ subunit. Requirements for dimerization with β subunits. J Biol Chem 1995; 270 : 15892–8. [Google Scholar]
  6. Frydman J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 2001; 70 : 603–47. [Google Scholar]
  7. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5 : 781–91. [Google Scholar]
  8. Clapham DE, Neer EJ. G protein bg subunits. Annu Rev Pharmacol Toxicol 1997; 37 : 167–203. [Google Scholar]
  9. Leroux MR, Hartl FU. Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr Biol 2000; 10 : R260–4. [Google Scholar]
  10. Hynes GM, Willison KR. Individual subunits of the eukaryotic cytosolic chaperonin mediate interactions with binding sites located on subdomains of β-actin. J Biol Chem 2000; 275 : 18985–94. [Google Scholar]
  11. Farr GW, Scharl EC, Schumacher RJ, et al. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell 1997; 89 : 927–37. [Google Scholar]
  12. Siegers K, Bolter B, Schwarz JP, et al. TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J 2003; 22 : 5230–40. [Google Scholar]
  13. Valpuesta JM, Martin-Benito J, Gomez-Puertas P, et al. Structure and function of a protein folding machine: the eukaryotic cytosolic chaperonin CCT. FEBS Lett 2002; 529 : 11–6. [Google Scholar]
  14. Wells CA, Dingus J, Hildebrandt JD. Role of the chaperonin CCT/TRiC complex in G protein βγ-dimer assembly. J Biol Chem 2006; 281 : 20221–32. [Google Scholar]
  15. Blaauw M, Knol JC, Kortholt A, et al. Phosducin-like proteins in Dictyostelium discoideum: implications for the phosducin family of proteins. EMBO J 2003; 22 : 5047–57. [Google Scholar]
  16. Bauer PH, Muller S, Puzicha M, et al. Phosducin is a protein kinase A-regulated G-protein regulator. Nature 1992; 358 : 73–6. [Google Scholar]
  17. Lee RH, Ting TD, Lieberman BS, et al. Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin. J Biol Chem 1992; 267 : 25104–12. [Google Scholar]
  18. McLaughlin JN, Thulin CD, Hart SJ, et al. Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex. Proc Natl Acad Sci USA 2002; 99 : 7962–7. [Google Scholar]
  19. Knol JC, Engel R, Blaauw M, et al. The phosducin-like protein PhLP1 is essential for Gβγ dimer formation in Dictyostelium discoideum. Mol Cell Biol 2005; 25 : 8393–400. [Google Scholar]
  20. Lukov GL, Hu T, McLaughlin JN, et al. Phosducin-like protein acts as a molecular chaperone for G protein βγ dimer assembly. EMBO J 2005; 24 : 1965–75. [Google Scholar]
  21. Lukov GL, Baker CM, Ludtke PJ, et al. Mechanism of assembly of G protein βγ subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex. J Biol Chem 2006; 281 : 22261–74. [Google Scholar]
  22. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001; 3 : 492–8. [Google Scholar]
  23. Leclerc PC, Auger-Messier M, Lanctôt PM, et al. A polyaromatic caveolin-binding-like motif in the cytoplasmic tail of the type 1 receptor for angiotensin II plays an important role in receptor trafficking and signaling. Endocrinology 2002; 143 : 4702–10. [Google Scholar]
  24. Dupré DJ, Robitaille M, Richer M, et al. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for Gγ subunits before assembly with Gβ. J Biol Chem 2007; 282 : 13703–15. [Google Scholar]
  25. Natochin M, Campbell TN, Barren B, et al. Characterization of the G α(s) regulator cysteine string protein. J Biol Chem 2005; 280 : 30236–41. [Google Scholar]
  26. Le-Niculescu H, Niesman I, Fischer T, et al. Identification and characterization of GIV, a novel Gα i/s-interacting protein found on COPI, endoplasmic reticulum-Golgi transport vesicles. J Biol Chem 2005; 280 : 22012–20. [Google Scholar]
  27. Thibault C, Sganga MW, Miles MF. Interaction of phosducin-like protein with G protein bγ subunits. J Biol Chem 1997; 272 : 12253–6. [Google Scholar]
  28. Howlett AC, Gray AJ, Hunter JM, Willardson BM. The role of molecular chaperones in G protein β5/regulator of G protein signaling dimer assembly and G protein βγ dimer specificity. J Biol Chem 2009; 284 : 16386–99. [Google Scholar]
  29. Robishaw JD, Berlot CH. Translating G protein subunit diversity into functional specificity. Curr Opin Cell Biol 2004; 16 : 206–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.