Free Access
Med Sci (Paris)
Volume 25, Number 10, Octobre 2009
Page(s) 815 - 820
Section M/S revues
Published online 15 October 2009
  1. Eaton DC, Helms MN, Koval M, et al. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 2008; 71 : 403–23. [Google Scholar]
  2. Randell SH, Boucher RC. Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol 2006; 35 : 20–8. [Google Scholar]
  3. Canessa CM, Schild L, Buell G, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994; 367 : 463–7. [Google Scholar]
  4. Tarran R, Trout L, Donaldson SH, Boucher RC. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol 2006; 127 : 591–604. [Google Scholar]
  5. Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lung liquid clearance in aENaC-deficient mice. Nat Genet 1996; 12 : 325–8. [Google Scholar]
  6. Dagenais A, Gosselin D, Guilbault C, et al. Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa. Respir Res 2005; 6 : 2. [Google Scholar]
  7. Boyer S, Faure K, Ader F, et al. Chronic pneumonia with Pseudomonas aeruginosa and impaired alveolar fluid clearance. Respir Res 2005; 6 : 17. [Google Scholar]
  8. Kunzelmann K, Scheidt K, Scharf B, et al. Flagellin of Pseudomonas aeruginosa inhibits Na+ transport in airway epithelia. FASEB J 2006; 20 : 545–6. [Google Scholar]
  9. Graham A, Steel DM, Wilson R, et al. Effects of purified Pseudomonas rhamnolipids on bioelectric properties of sheep tracheal epithelium. Exp Lung Res 1993; 19 : 77–89. [Google Scholar]
  10. Stutts MJ, Schwab JH, Chen MG, et al. Effects of Pseudomonas aeruginosa on bronchial epithelial ion transport. Am Rev Respir Dis 1986; 134 : 17–21. [Google Scholar]
  11. Kunzelmann K, Beesley AH, King NJ, et al. Influenza virus inhibits amiloride-sensitive Na+ channels in respiratory epithelia. Proc Natl Acad Sci USA 2000; 97 : 10282–7. [Google Scholar]
  12. Chen XJ, Seth S, Yue G, et al. Influenza virus inhibits ENaC and lung fluid clearance. Am J Physiol Lung Cell Mol Physiol 2004; 287 : L366–73. [Google Scholar]
  13. Kunzelmann K, Konig J, Sun J, et al. Acute effects of parainfluenza virus on epithelial electrolyte transport. J Biol Chem 2004; 279 : 48760–6. [Google Scholar]
  14. Kunzelmann K, Sun J, Meanger J, et al. Inhibition of airway Na+ transport by respiratory syncytial virus. J Virol 2007; 81 : 3714–20. [Google Scholar]
  15. Dagenais A, Fréchette R, Yamagata Y, et al. Downregulation of ENaC activity and expression by TNF-alpha in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 286 : L301–11. [Google Scholar]
  16. Roux J, Kawakatsu H, Gartland B, et al. Interleukin-1b decreases expression of the epithelial sodium channel a-subunit in alveolar epithelial cells via a p38 MAPK-dependent signaling pathway. J Biol Chem 2005; 280 : 18579–89. [Google Scholar]
  17. Frank J, Roux J, Kawakatsu H, et al. TGF-beta1 decreases aENaC expression and alveolar epithelial vectorial sodium and fluid transport via an ERK 1/2-dependent mechanism. J Biol Chem 2003; 278 : 43939–50. [Google Scholar]
  18. Sugita M, Ferraro P, Dagenais A, et al. Alveolar liquid clearance and sodium channel expression are decreased in transplanted canine lungs. Am J Respir Crit Care Med 2003; 167 : 1440–50. [Google Scholar]
  19. Mall M, Grubb BR, Harkema JR, et al. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004; 10 : 487–93. [Google Scholar]
  20. Mall MA. Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 2008; 21 : 13–24. [Google Scholar]
  21. Kunzelmann K, McMorran B. First encounter: how pathogens compromise epithelial transport. Physiology (Bethesda) 2004; 19 : 240–4. [Google Scholar]
  22. Egli M, Duplain H, Lepori M, et al. Defective respiratory amiloride sensitive sodium transport predisposes to pulmonary oedema and delays Its resolution In mice. J Physiol 2004; 560 : 857–65. [Google Scholar]
  23. Matthay MA, Robriquet L, Fang X. Alveolar epithelium: role in lung fluid balance and acute lung injury. Proc Am Thorac Soc 2005; 2 : 206–13. [Google Scholar]
  24. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 163 : 1376–83. [Google Scholar]
  25. Helve O, Pitkanen OM, Andersson S, et al. Low expression of human epithelial sodium channel in airway epithelium of preterm infants with respiratory distress. Pediatrics 2004; 113 : 1267–72. [Google Scholar]
  26. Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 2007; 159 : 350–9. [Google Scholar]
  27. Berthiaume Y, Lesur O, Dagenais A. Treatment of adult respiratory distress syndrome: plea for rescue therapy of the alveolar epithelium. Thorax 1999; 2 : 150–60. [Google Scholar]
  28. Jain L, Chen XJ, Ramosevac S et, al. Expression of highly selective sodium channels in alveolar type II cells is determined by culture conditions. Am J Physiol Lung Cell Mol Physiol 2001; 280 : L646–58. [Google Scholar]
  29. Eaton DC, Chen J, Ramosevac S, et al. Regulation of Na+ channels in lung alveolar type II epithelial cells. Proc Am Thorac Soc 2004; 1 : 10–6. [Google Scholar]
  30. Zhou Z, Treis D, Schubert SC, et al. Preventive but not late amiloride therapy reduces morbidity and mortality of lung disease in beta-ENaC-overexpressing mice. Am J Respir Crit Care Med 2008; 178 : 1245–56. [Google Scholar]
  31. Factor P, Adir Y, Mutlu GM, et al. Effects of beta2-adrenergic receptor overexpression on alveolar epithelial active transport. J Allergy Clin Immunol 2002; 110 : S242–6. [Google Scholar]
  32. Matthay MA: Treatment of acute lung injury: clinical and experimental studies. Proc Am Thorac Soc 2008; 5 : 297–9. [Google Scholar]
  33. Randrianarison N, Escoubet B, Ferreira C, et al. Beta-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice. J Physiol 2007; 582 : 777–88. [Google Scholar]
  34. Stern M, Ulrich K, Robinson C, et al. Pretreatment with cationic lipid-mediated transfer of the Na+K+-ATPase pump in a mouse model in vivo augments resolution of high permeability pulmonary oedema. Gene Ther 2000; 7 : 960–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.