Free Access
Med Sci (Paris)
Volume 25, Number 6-7, Juin-Juillet 2009
Page(s) 608 - 616
Section Dossier Biologie des systèmes
Published online 15 June 2009
  1. Lusis AJ. A thematic review series: systems biology approaches to metabolic and cardiovascular disorders. J Lipid Res 2006; 22 : 1268–74. [Google Scholar]
  2. Oliver SG. From genomes to systems: the path with yeast. Philos Trans R Soc Lond B Biol Sci 2006; 361 : 477–82. [Google Scholar]
  3. Huan T, Sivachenko AY, Harrison SH, Chen JY. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining. BMC Bioinformatics 2008; 9 : S5. [Google Scholar]
  4. Soppa J. From genomes to function: haloarchaea as model organisms. Microbiology 2006; 152 : 585–90. [Google Scholar]
  5. Jamshidi N, Palsson BO. Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 2008; 4 : 1268–74. [Google Scholar]
  6. Mete M, Tang F, Xu X, Yuruk N. A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 2008; 9 : S19. [Google Scholar]
  7. Gadal F, Bozic C, Pillot-Brochet C, et al. Integrated transcriptome analysis of the cellular mechanisms associated with Ha-ras-dependent malignant transformation of the human breast epithelial MCF7 cell line. NAR 2003; 19 : 5789–804. [Google Scholar]
  8. Gadal F, Starzec A, Bozic C, et al. Integrative analysis of gene expression patterns predicts specific modulations of defined cell functions by estrogen and tamoxifen in MCF7 breast cancer cells. J Mol Endocrinol 2005; 34 : 61–75. [Google Scholar]
  9. Iris F, Xavier F. De la modélisation cellulaire aux systèmes intégrés. Ecrin 2003; 53 : 13–6. [Google Scholar]
  10. Iris F. Les modèles physiologiques intégrés. In : Écrin, eds. Technologies du futur, enjeux de société. Paris : Omniscience, 2005 : 40–65. [Google Scholar]
  11. Iris F, Géa M, Lampe PH, et al. Integrative biology in the discovery of relevant biomarkers monitoring cognitive disorders pathogenesis and progression. BioTribune 2008; 28 : 8–23. [Google Scholar]
  12. Iris F. Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In : Turck CW, ed. Biomarkers for psychiatric disorders. Berlin : Springer Verlag, 2008 : 486–538. [Google Scholar]
  13. Salhi I, Cambon-Roques S, Lamarre I, et al. The anti-Müllerian hormone type II receptor: insights into the binding domains recognized by a monoclonal antibody and the natural ligand. Biochem J 2004; 379 : 785–93. [Google Scholar]
  14. Xavier F, Allard S. Anti-Müllerian hormone, beta-catenin and Müllerian duct regression. Mol Cell Endocrinol 2003; 211 : 115–21. [Google Scholar]
  15. Wolff E, Lutz-Ostertag Y. Histological phenomenon of the regression of the Müllerian ducts in the male chick embryo. Arch Anat Histol Embryol 1952; 34 : 459–65. [Google Scholar]
  16. Orvis GD, Jamin SP, Kwan KM, et al. Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. Biol Reprod 2008; 78 : 994–1001. [Google Scholar]
  17. Klattig J, Englert C. The Müllerian duct: recent insights into its development and regression. Sex Dev 2007; 1 : 271–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.