Accès gratuit
Numéro
Med Sci (Paris)
Volume 25, Numéro 6-7, Juin-Juillet 2009
Page(s) 608 - 616
Section Dossier Biologie des systèmes
DOI https://doi.org/10.1051/medsci/2009256-7608
Publié en ligne 15 juin 2009
  1. Lusis AJ. A thematic review series: systems biology approaches to metabolic and cardiovascular disorders. J Lipid Res 2006; 22 : 1268–74. [Google Scholar]
  2. Oliver SG. From genomes to systems: the path with yeast. Philos Trans R Soc Lond B Biol Sci 2006; 361 : 477–82. [Google Scholar]
  3. Huan T, Sivachenko AY, Harrison SH, Chen JY. ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining. BMC Bioinformatics 2008; 9 : S5. [Google Scholar]
  4. Soppa J. From genomes to function: haloarchaea as model organisms. Microbiology 2006; 152 : 585–90. [Google Scholar]
  5. Jamshidi N, Palsson BO. Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 2008; 4 : 1268–74. [Google Scholar]
  6. Mete M, Tang F, Xu X, Yuruk N. A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 2008; 9 : S19. [Google Scholar]
  7. Gadal F, Bozic C, Pillot-Brochet C, et al. Integrated transcriptome analysis of the cellular mechanisms associated with Ha-ras-dependent malignant transformation of the human breast epithelial MCF7 cell line. NAR 2003; 19 : 5789–804. [Google Scholar]
  8. Gadal F, Starzec A, Bozic C, et al. Integrative analysis of gene expression patterns predicts specific modulations of defined cell functions by estrogen and tamoxifen in MCF7 breast cancer cells. J Mol Endocrinol 2005; 34 : 61–75. [Google Scholar]
  9. Iris F, Xavier F. De la modélisation cellulaire aux systèmes intégrés. Ecrin 2003; 53 : 13–6. [Google Scholar]
  10. Iris F. Les modèles physiologiques intégrés. In : Écrin, eds. Technologies du futur, enjeux de société. Paris : Omniscience, 2005 : 40–65. [Google Scholar]
  11. Iris F, Géa M, Lampe PH, et al. Integrative biology in the discovery of relevant biomarkers monitoring cognitive disorders pathogenesis and progression. BioTribune 2008; 28 : 8–23. [Google Scholar]
  12. Iris F. Biological modeling in the discovery and validation of cognitive dysfunctions biomarkers. In : Turck CW, ed. Biomarkers for psychiatric disorders. Berlin : Springer Verlag, 2008 : 486–538. [Google Scholar]
  13. Salhi I, Cambon-Roques S, Lamarre I, et al. The anti-Müllerian hormone type II receptor: insights into the binding domains recognized by a monoclonal antibody and the natural ligand. Biochem J 2004; 379 : 785–93. [Google Scholar]
  14. Xavier F, Allard S. Anti-Müllerian hormone, beta-catenin and Müllerian duct regression. Mol Cell Endocrinol 2003; 211 : 115–21. [Google Scholar]
  15. Wolff E, Lutz-Ostertag Y. Histological phenomenon of the regression of the Müllerian ducts in the male chick embryo. Arch Anat Histol Embryol 1952; 34 : 459–65. [Google Scholar]
  16. Orvis GD, Jamin SP, Kwan KM, et al. Functional redundancy of TGF-beta family type I receptors and receptor-Smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. Biol Reprod 2008; 78 : 994–1001. [Google Scholar]
  17. Klattig J, Englert C. The Müllerian duct: recent insights into its development and regression. Sex Dev 2007; 1 : 271–8. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.