Med Sci (Paris)
Volume 25, Number 5, Mai 2009
Arche de Noé immunologique
Page(s) 505 - 512
Section M/S revues : Arche de Noé Immunologique
Published online 15 May 2009
  1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric Chalcone Synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990; 2 : 279–89. [Google Scholar]
  2. Van der Krol AR, Mur LA, Beld M, et al. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990; 2 : 291–9. [Google Scholar]
  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 2004; 116 : 281–97. [Google Scholar]
  4. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 2006; 57 : 19–53. [Google Scholar]
  5. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806–11. [Google Scholar]
  6. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initation step of RNA interference. Nature 2001; 409 : 363–6. [Google Scholar]
  7. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999; 286 : 950–52. [Google Scholar]
  8. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15 : 188–200. [Google Scholar]
  9. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404 : 293–6. [Google Scholar]
  10. Mallory AC, Bouché N. MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci 2008; 13 : 359–67. [Google Scholar]
  11. Ekwall K. The RITS complex-A direct link between small RNA and heterochromatin. Mol Cell 2004; 13 : 304–5. [Google Scholar]
  12. Voinnet O. Induction and suppression of RNA silencing : insights from viral infections. Nat Rev Genet 2005; 6 : 206–20. [Google Scholar]
  13. Li F, Ding SW. Virus counterdefence: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 2006; 60 : 503–31. [Google Scholar]
  14. Ding SW, Voinnet O. Antiviral immunity directed by small RNAs. Cell 2007; 130 : 413–26. [Google Scholar]
  15. Molnár A, Csorba T, Lakatos L, et al. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 2005; 79 : 7812–8. [Google Scholar]
  16. Ho T, Pallett D, Rusholme R, et al. A simplified method for cloning of short interfering RNAs from Brassica juncea infected with Turnip mosaic potyvirus and Turnip crinkle carmovirus. J Virol Meth 2006; 136 : 217–23. [Google Scholar]
  17. Chellappan P, Vanitharani R, Pita J, Fauquet CM. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 2004; 78 : 7465–77. [Google Scholar]
  18. Moissiard G, Voinnet O. RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA 2006; 103 : 19593–98. [Google Scholar]
  19. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 2006; 20 : 3407–25. [Google Scholar]
  20. Vazquez F, Blevins T, Ailhas J, et al. Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 2008; 36 : 6429–38. [Google Scholar]
  21. Chapman EJ, Carington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 2007; 8 : 884–96. [Google Scholar]
  22. Vaucheret H, Vazquez F, Crété P, Bartel DP. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant develoment. Genes Dev 2004; 18 : 1187–97. [Google Scholar]
  23. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 2008; 320 : 1185–90. [Google Scholar]
  24. Mi S, Cai T, Hu Y, et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide. Cell 2008; 133 : 116–27. [Google Scholar]
  25. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 2003; 299 : 716–9. [Google Scholar]
  26. Zheng X, Zhu J, Kapoor A, Zhu JK. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 2007; 26 : 1691–701. [Google Scholar]
  27. Yang Z, Ebright YW, Yu B, Chen X. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto 2’ OH of the 3’ terminal nucleotide. Nucleic Acids Res 2006; 34 : 667–75. [Google Scholar]
  28. Bouché N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 2006; 25 : 3347–56. [Google Scholar]
  29. Deleris A, Gallego-Bartolome J, Bao J, et al. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 2006; 313 : 68–71. [Google Scholar]
  30. Blevins T, Rajeswaran R, Shivaprasad PV, et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 2006; 34 : 6233–46. [Google Scholar]
  31. Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced gene silencing. Plant Cell 1998; 10 : 937–46. [Google Scholar]
  32. Takeda A, Iwasaki S, Watanabe T, et al. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 2008; 49 : 493–500. [Google Scholar]
  33. Montgomery TA, Howell MD, Cuperus JT, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 2008; 133 : 128–41. [Google Scholar]
  34. Raja P, Sanville BC, Buchmann RC, Bisaro DM. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 2008; 82 : 8997–9007. [Google Scholar]
  35. Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 2009; 83 : 1332–40. [Google Scholar]
  36. Dunoyer P, Lecellier CH, Parizotto EA, et al. Probing the miRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 2004; 16 : 1235–50. [Google Scholar]
  37. Vogler H, Akbergenov R, Shivaprasad PV, et al. modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J Virol 2007; 81 : 10379–88. [Google Scholar]
  38. Ye K, Malinina L, Patel DJ. Recognition of small interfering RNA by a viral suppressor of RNA silencing. Nature 2003; 426 : 874–8. [Google Scholar]
  39. Vargason JM, Szittya G, Burgyan J, Hall TM. Size selective recognition of siRNA by an RNA silencing suppressor. Cell 2003; 115 : 799–811. [Google Scholar]
  40. Zhang X, Yuan YR, Pei Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 2006; 20 : 3255–68. [Google Scholar]
  41. Baumberger N, Tsai CH, Lie M, et al. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 2007; 17 : 1609–14. [Google Scholar]
  42. Voinnet O. Non-cell autonomous RNA silencing. FEBS Lett 2005; 579 : 5858–71. [Google Scholar]
  43. Dunoyer P, Voinnet O. RNA as a signalling molecule. In : Fleming A, ed. Intercellular communication in plants. Annual Plant Reviews, vol. 16. Sheffield, UK : Blackwell Publishing, 2005 : 49–84. [Google Scholar]
  44. Voinnet O, Lederer C, Baulcombe DC. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 2000; 103 : 157–67. [Google Scholar]
  45. Himber C, Dunoyer P, Moissiard G, et al. Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 2003; 22 : 4523–33. [Google Scholar]
  46. Silhavy D, Molnar A, Lucioli A, et al. A viral protein suppresses RNA silencing and binds silencing-generated 21- to 25-nucleotide double-stranded RNAs. EMBO J 2002; 21 : 3070–80. [Google Scholar]
  47. Havelda Z, Hornyik C, Crescenzi A, Burgyan J. In situ characterization of Cymbidium ringspot tombusvirus infection-induced posttranscriptional gene silencing in Nicotiana benthamiana. J Virol 2003; 77 : 6082–6. [Google Scholar]
  48. Szittya G, Molnar A, Silhavy D, et al. Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 2002; 14 : 359–72. [Google Scholar]
  49. Dunoyer P, Himber C,Voinnet O. DICER-LIKE 4 is required for RNAi and produces the 21nt siRNA component of the plant cell-to-cell silencing signal. Nat Genet 2005; 37 : 1356–60. [Google Scholar]
  50. Dunoyer P, Himber C, Ruiz-Ferrer V, et al. Intra- and inter-cellular RNA interference in Arabidopsis requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 2007; 39 : 848–56. [Google Scholar]
  51. Jones JD, Dangl JL. The plant immune system. Nature 2006; 444 : 323–9. [Google Scholar]
  52. Li HW, Lucy AP, Guo HS, et al. Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J 1999; 18 : 2683–91. [Google Scholar]
  53. Dunoyer P, Himber C, Voinnet O. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium infections. Nat Genet 2006; 38 : 258–263. [Google Scholar]
  54. Navarro L, Dunoyer P, Jay F, et al. A microRNA contributes to arabidopsis basal resistance by repressing auxin-signalling. Science 2006; 312 : 436–439. [Google Scholar]
  55. Pfeffer S, Zavolan M, Grässer FA, et al. Identification of virus-encoded microRNAs. Science 2004; 304 : 734–6. [Google Scholar]
  56. Dölken L, Perot J, Cognat V, et al. Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 2007; 81 : 13771–82. [Google Scholar]
  57. Sullivan CS, Grundhoff AT, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 2005; 435 : 682–6. [Google Scholar]
  58. Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science 2005; 308 : 557–60. [Google Scholar]
  59. Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005; 309 : 1577–81. [Google Scholar]
  60. Chang J, Guo JT, Jiang D, et al. Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 2008; 82 : 8215–23. [Google Scholar]
  61. Ladeiro Y, Zucman-Rossi J. Micro-ARN (miARN) et cancer : le cas des tumeurs hépatocellulaires. Med Sci (Paris) 2009; 25 : 467–72. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.