Med Sci (Paris)
Volume 25, Number 5, Mai 2009
Arche de Noé immunologique
Page(s) 497 - 504
Section M/S revues : Arche de Noé Immunologique
Published online 15 May 2009
  1. Barrière A, Félix MA. Isolation of C. elegans and related nematodes. In : WormBook. The C. elegans Research Community ed. [Google Scholar]
  2. Hodgkin J, Kuwabara PE, Corneliussen B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 2000; 10 : 1615–8. [Google Scholar]
  3. Troemel ER, Felix MA, Whiteman NK, Barriere A, Ausubel FM. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol 2008; 6 : 2736–52. [Google Scholar]
  4. Pujol N, Link EM, Liu, LX, et al. A reverse genetic analysis of components of the Toll signalling pathway in Caenorhabditis elegans. Curr Biol 2001; 11 : 809–21. [Google Scholar]
  5. Pradel E, Zhang Y, Pujol N, et al. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proc Natl Acad Sci USA 2007; 104 : 2295–300. [Google Scholar]
  6. Kurz CL, Chauvet S, Andres E, et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 2003; 22 : 1451–60. [Google Scholar]
  7. Tenor JL, Aballay A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep 9 2008; 9 : 103–9. [Google Scholar]
  8. Fares H, Greenwald I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 2001; 159 : 133–45. [Google Scholar]
  9. Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev 2009; 227 : 221–33. [Google Scholar]
  10. Schulenburg H, Hoeppner MP, Weiner J, 3rd, Bornberg-Bauer E. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 2008; 213 : 237–50. [Google Scholar]
  11. Wong D, Bazopoulou D, Pujol N, Tavernarakis N, Ewbank JJ. Genome-wide investigation reveals pathogen-specific and shared signatures in the response of C. elegans to infection. Genome Biol 2007; 8 : R194. [Google Scholar]
  12. O’Rourke D, Baban D, Demidova M, Mott R, Hodgkin J. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 2006; 16 : 1005–16. [Google Scholar]
  13. Pujol N, Zugasti O, Wong D, et al. Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 2008; 4 : e1000105. [Google Scholar]
  14. Means TK, Mylonakis E, Tampakakis E, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 2009; 206 : 637–53. [Google Scholar]
  15. Powell JR, Kim DH, Ausubel FM. The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci USA 2009; 106 : 2782–7. [Google Scholar]
  16. Shivers RP, Youngman MJ, Kim DH. Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol 2008; 11 : 251–6. [Google Scholar]
  17. Matzinger P. The danger model: a renewed sense of self. Science 2002; 296 : 301–5. [Google Scholar]
  18. Chamy LE, Leclerc V, Caldelari I, Reichhart JM. Sensing of « danger signals » and pathogen-associated molecular patterns defines binary signaling pathways « upstream » of Toll. Nat Immunol 2008; 9 : 1165–70. [Google Scholar]
  19. Shpacovitch V, Feld M, Bunnett NW, Steinhoff M. Protease-activated receptors: novel Partners in innate immunity. Trends Immunol 2007; 28 : 541–50. [Google Scholar]
  20. Chavez V, Mohri-Shiomi A, Maadani A, Vega LA, Garsin DA. Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans. Genetics 2007; 176 : 1567–77. [Google Scholar]
  21. Haskins KA, Russell JF, Gaddis N, Dressman HK, Aballay A. Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 2008; 15 : 87–97. [Google Scholar]
  22. Kim DH, Feinbaum R, Alloing G, et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 2002; 297 : 623–6. [Google Scholar]
  23. Troemel ER, Chu SW, Reinke V, et al. p38 MAPK Regulates Expression of Immune Response Genes and Contributes to Longevity in C. elegans. PLoS Genetics 2006; 2 : e183. [Google Scholar]
  24. Nicholas HR, Hodgkin J. The ERK MAP kinase cascade mediates tail swelling and a protective response to rectal infection in C. elegans. Curr Biol 2004; 14 : 1256–61. [Google Scholar]
  25. Kim DH, Liberati NT, Mizuno T, et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc Natl Acad Sci USA 2004; 101 : 10990–4. [Google Scholar]
  26. Mallo GV, Kurz CL, Couillault C, et al. Inducible antibacterial defense system in C. elegans. Curr Biol 2002; 12 : 1209–14. [Google Scholar]
  27. Garsin DA, Villanueva JM, Begun J, et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 2003; 300 : 1921. [Google Scholar]
  28. Aballay A, Ausubel FM. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 2001; 98 : 2735–9. [Google Scholar]
  29. Shapira M, Hamlin BJ, Rong J, et al. A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci USA 2006; 103 : 14086–91. [Google Scholar]
  30. Singh V, Aballay A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc Natl Acad Sci USA 2006; 103, 13092–7. [Google Scholar]
  31. Irazoqui JE, Ng A, Xavier RJ, Ausubel FM. Role for beta-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions. Proc Natl Acad Sci USA 2008; 105 : 17469–74. [Google Scholar]
  32. Kawli T, Tan MW. Neuroendocrine signals modulate the innate immunity of Caenorhabditis elegans through insulin signaling. Nat Immunol 2008; 9 : 1415–24. [Google Scholar]
  33. Styer KL, Singh V, Macosko E, et al. Innate Immunity in Caenorhabditis elegans Is Regulated by Neurons Expressing NPR-1/GPCR. Science 2008; 322 (5 900) : 460–4. [Google Scholar]
  34. Reddy KC, Andersen EC, Kruglyak L, Kim DH. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 2009; 323 : 382–4. [Google Scholar]
  35. Dijksterhuis J, Veenhuis M, Harder W. Ultrastructural study of adhesion and initial stages of infection of the nematode by conidia of Drechmeria coniospora. Mycological research 1990; 94 : 1–8. [Google Scholar]
  36. Couillault C, Pujol N, Reboul J, et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 2004; 5 : 488–94. [Google Scholar]
  37. Ebert D. Host-parasite coevolution: Insights from the Daphnia-parasite model system. Curr Opin Microbiol 2008; 11 : 290–301. [Google Scholar]
  38. Zugasti O, Ewbank JJ. Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol 2009; 10 : 249–56. [Google Scholar]
  39. Pujol N, Cypowyj S, Ziegler K, et al. Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol 2008; 18 : 481–9. [Google Scholar]
  40. Tong A, Lynn G, Ngo V, et al. Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci USA 2009; 106 : 1457–61. [Google Scholar]
  41. Sorensen OE, Thapa DR, Roupe KM, et al. Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 2006; 116 : 1878–85. [Google Scholar]
  42. O’Neill LA, Fitzgerald KA, Bowie AG. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 2003; 24 : 286–290. [Google Scholar]
  43. Liberati NT, Fitzgerald KA, Kim DH, et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc Natl Acad Sci USA 2004; 101 : 6593–8. [Google Scholar]
  44. Kiss-Toth E, Bagstaff SM, Sung HY, et al. Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem; 279 : 42703–8. [Google Scholar]
  45. Ziegler K, Kurz CL, Cypowyj S, et al. Antifungal innate immunity in C. elegans: PKδd links G-protein signaling and a conserved p38 MAPK cascade. Cell Host and Microbes 2009 (sous presse). [Google Scholar]
  46. Sendid B, Jouault T, Vitse A, et al. Glycannes pariétaux de levures et anticorps spécifiques : biomarqueurs et outils d’analyse physiopathologique des candidoses et de la maladie de Crohn. Med Sci (Paris) 2009; 25 : 473–81. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.