Free Access
Issue
Med Sci (Paris)
Volume 24, Number 6-7, Juin-Juillet 2008
Page(s) 635 - 640
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082467635
Published online 15 June 2008
  1. Baumeister R, Schaffitzel E, Hertweck MJ. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. Endocrinology 2006; 190 : 191–202. [Google Scholar]
  2. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366 : 461–4. [Google Scholar]
  3. Wolff S, Ma H, Burch D, et al. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 2006; 124 : 1039–53. [Google Scholar]
  4. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 2001; 28 : 139–45. [Google Scholar]
  5. Garsin DA, Villanueva JM, Begun J, et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 2003; 300 : 1921. [Google Scholar]
  6. Troemel ER, Chu SW, Reinke V, et al. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2006; 2 : e183. [Google Scholar]
  7. Kondo M, Yanase S, Ishii T, et al. The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech Ageing Dev 2005; 126 : 642–7. [Google Scholar]
  8. Kappeler L, De Magalhaes Filho C, Le Bouc Y, Holzenberger M. Durée de vie, génétique et axe somatotrope. Med Sci (Paris) 2006; 22 : 259–65. [Google Scholar]
  9. Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol 2007; 8 : 681–91. [Google Scholar]
  10. Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling : mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380 : 297–309. [Google Scholar]
  11. Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis : molecules to die for ? J Immunol 2003; 171 : 1623–9. [Google Scholar]
  12. Brunet A. Les multiples actions des facteurs de transcription FOXO. Med Sci (Paris) 2004; 20 : 856–9. [Google Scholar]
  13. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24 : 7410–25. [Google Scholar]
  14. Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs Are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 12 : 325–39. [Google Scholar]
  15. Ramaswamy S, Nakamura N, Sansal I, et al. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2002; 2 : 81–91. [Google Scholar]
  16. Dowell P, Otto TC, Adi S, Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 2003; 278 : 45485–91. [Google Scholar]
  17. Guo S, Rena G, Cichy S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274 : 17184–92. [Google Scholar]
  18. Tsai WC, Bhattacharyya N, Han LY, et al. Insulin inhibition of transcription stimulated by the forkhead protein Foxo1 is not solely due to nuclear exclusion. Endocrinology 2003; 144 : 5615–22. [Google Scholar]
  19. Essers MA, Weijzen S, de Vries-Smits AM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 2004; 23 : 4802–12. [Google Scholar]
  20. Frescas, D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005; 280 : 20589–95. [Google Scholar]
  21. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1 : tipping the balance towards survival. Trends Cell Biol 2004; 14 : 408–12. [Google Scholar]
  22. Furuyama T, Nakazawa T, Nakano I, Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 2000; 349 : 629–34. [Google Scholar]
  23. Tsai KL, Sun Y, Huang C, et al. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res 2007; 35 : 6984–94. [Google Scholar]
  24. Naimi M, Gautier N, Chaussade C, et al. Nuclear forkhead box O1 controls and integrates key signaling pathways in hepatocytes. Endocrinology 2007; 148 : 2424–34. [Google Scholar]
  25. Han J, Sun P. The pathways to tumor suppression via route p38. Biochem Sci 2007; 32 : 364–71. [Google Scholar]
  26. Iyoda K, Sasaki Y, Horimoto M, et al. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 2003; 97 : 3017–26. [Google Scholar]
  27. Thierbach R, Schulz TJ, Isken I, et al. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum Mol Genet 2005; 14 : 3857–64. [Google Scholar]
  28. Lavoie JN, L’Allemain G, Brunet A, et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271 : 20608–16. [Google Scholar]
  29. Zhang W, Patil S, Chauhan B, et al. FoxO1 regulates multiple metabolic pathways in the liver : effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006; 281 : 10105–17. [Google Scholar]
  30. Cao, W, Collins QF, Becker TC, et al. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem 2005; 280 : 42731–7. [Google Scholar]
  31. Xiong Y, Collins QF, An J, et al. p38 mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. J Biol Chem 2007; 282 : 4975–82. [Google Scholar]
  32. Postic C, Dentin R, Girard J, Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 2004; 30 : 398–408. [Google Scholar]
  33. Capeau, J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci (Paris) 2003; 19 : 834–9. [Google Scholar]
  34. Dong LQ, Liu F. PDK2 : the missing piece in the receptor tyrosine kinase signaling pathway puzzle. Am J Physiol Endocrinol Metab 2005; 289 : E187–96. [Google Scholar]
  35. Sarbassov DD, Guertin DA, Ali SM, Sabatini D. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307 : 1098–101. [Google Scholar]
  36. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124 : 471–84. [Google Scholar]
  37. Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 Maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127 : 125–37. [Google Scholar]
  38. Matsumoto M, Han S, Kitamura D, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006; 116 : 2464–72. [Google Scholar]
  39. Gao, T, Furnari F, Newton AC, PHLPP : a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18 : 13–24. [Google Scholar]
  40. Barouki R. Stress oxydant et vieillissement. Med Sci (Paris) 2006; 22 : 266–72. [Google Scholar]
  41. Tothova Z, Mercher T. FoxO : stress ou vie éternelle. Med Sci (Paris) 2007; 23 : 466–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.