Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 6-7, Juin-Juillet 2008
Page(s) 635 - 640
Section M/S revues
DOI https://doi.org/10.1051/medsci/20082467635
Publié en ligne 15 juin 2008
  1. Baumeister R, Schaffitzel E, Hertweck MJ. Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. Endocrinology 2006; 190 : 191–202. [Google Scholar]
  2. Kenyon C, Chang J, Gensch E, et al. A C. elegans mutant that lives twice as long as wild type. Nature 1993; 366 : 461–4. [Google Scholar]
  3. Wolff S, Ma H, Burch D, et al. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 2006; 124 : 1039–53. [Google Scholar]
  4. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 2001; 28 : 139–45. [Google Scholar]
  5. Garsin DA, Villanueva JM, Begun J, et al. Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science 2003; 300 : 1921. [Google Scholar]
  6. Troemel ER, Chu SW, Reinke V, et al. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet 2006; 2 : e183. [Google Scholar]
  7. Kondo M, Yanase S, Ishii T, et al. The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech Ageing Dev 2005; 126 : 642–7. [Google Scholar]
  8. Kappeler L, De Magalhaes Filho C, Le Bouc Y, Holzenberger M. Durée de vie, génétique et axe somatotrope. Med Sci (Paris) 2006; 22 : 259–65. [Google Scholar]
  9. Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol 2007; 8 : 681–91. [Google Scholar]
  10. Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling : mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380 : 297–309. [Google Scholar]
  11. Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis : molecules to die for ? J Immunol 2003; 171 : 1623–9. [Google Scholar]
  12. Brunet A. Les multiples actions des facteurs de transcription FOXO. Med Sci (Paris) 2004; 20 : 856–9. [Google Scholar]
  13. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24 : 7410–25. [Google Scholar]
  14. Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs Are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 12 : 325–39. [Google Scholar]
  15. Ramaswamy S, Nakamura N, Sansal I, et al. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2002; 2 : 81–91. [Google Scholar]
  16. Dowell P, Otto TC, Adi S, Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 2003; 278 : 45485–91. [Google Scholar]
  17. Guo S, Rena G, Cichy S, et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274 : 17184–92. [Google Scholar]
  18. Tsai WC, Bhattacharyya N, Han LY, et al. Insulin inhibition of transcription stimulated by the forkhead protein Foxo1 is not solely due to nuclear exclusion. Endocrinology 2003; 144 : 5615–22. [Google Scholar]
  19. Essers MA, Weijzen S, de Vries-Smits AM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 2004; 23 : 4802–12. [Google Scholar]
  20. Frescas, D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005; 280 : 20589–95. [Google Scholar]
  21. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1 : tipping the balance towards survival. Trends Cell Biol 2004; 14 : 408–12. [Google Scholar]
  22. Furuyama T, Nakazawa T, Nakano I, Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 2000; 349 : 629–34. [Google Scholar]
  23. Tsai KL, Sun Y, Huang C, et al. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res 2007; 35 : 6984–94. [Google Scholar]
  24. Naimi M, Gautier N, Chaussade C, et al. Nuclear forkhead box O1 controls and integrates key signaling pathways in hepatocytes. Endocrinology 2007; 148 : 2424–34. [Google Scholar]
  25. Han J, Sun P. The pathways to tumor suppression via route p38. Biochem Sci 2007; 32 : 364–71. [Google Scholar]
  26. Iyoda K, Sasaki Y, Horimoto M, et al. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 2003; 97 : 3017–26. [Google Scholar]
  27. Thierbach R, Schulz TJ, Isken I, et al. Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum Mol Genet 2005; 14 : 3857–64. [Google Scholar]
  28. Lavoie JN, L’Allemain G, Brunet A, et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271 : 20608–16. [Google Scholar]
  29. Zhang W, Patil S, Chauhan B, et al. FoxO1 regulates multiple metabolic pathways in the liver : effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006; 281 : 10105–17. [Google Scholar]
  30. Cao, W, Collins QF, Becker TC, et al. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem 2005; 280 : 42731–7. [Google Scholar]
  31. Xiong Y, Collins QF, An J, et al. p38 mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. J Biol Chem 2007; 282 : 4975–82. [Google Scholar]
  32. Postic C, Dentin R, Girard J, Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 2004; 30 : 398–408. [Google Scholar]
  33. Capeau, J. Voies de signalisation de l’insuline : mécanismes affectés dans l’insulino-résistance. Med Sci (Paris) 2003; 19 : 834–9. [Google Scholar]
  34. Dong LQ, Liu F. PDK2 : the missing piece in the receptor tyrosine kinase signaling pathway puzzle. Am J Physiol Endocrinol Metab 2005; 289 : E187–96. [Google Scholar]
  35. Sarbassov DD, Guertin DA, Ali SM, Sabatini D. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307 : 1098–101. [Google Scholar]
  36. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124 : 471–84. [Google Scholar]
  37. Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 Maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127 : 125–37. [Google Scholar]
  38. Matsumoto M, Han S, Kitamura D, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006; 116 : 2464–72. [Google Scholar]
  39. Gao, T, Furnari F, Newton AC, PHLPP : a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18 : 13–24. [Google Scholar]
  40. Barouki R. Stress oxydant et vieillissement. Med Sci (Paris) 2006; 22 : 266–72. [Google Scholar]
  41. Tothova Z, Mercher T. FoxO : stress ou vie éternelle. Med Sci (Paris) 2007; 23 : 466–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.