Free Access
Med Sci (Paris)
Volume 24, Number 6-7, Juin-Juillet 2008
Page(s) 629 - 634
Section M/S revues
Published online 15 June 2008
  1. Michnick SW, Ear PH, Emily, et al. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 2007; 6 : 569–82. [Google Scholar]
  2. Erdos P, Renyi A. On the evolution of random graphs. Math Inst Hungarian Acad Sci 1960; 5 : 17–61. [Google Scholar]
  3. Barabasi AL, Albert R. Meergence of scaling in random network. Science 1999; 286 : 509–12. [Google Scholar]
  4. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004; 5 : 101–13. [Google Scholar]
  5. Canales RD, Luo Y, Willey JC, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotech 2006; 24 : 1115–22. [Google Scholar]
  6. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, et al. Performance comparison of one-color and two-color platforms within the microarray quality control (MAQC) project. Nat Biotech 2006; 24 : 1140–50. [Google Scholar]
  7. Shi L, Reid LH, Jones WD, et al. The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotech 2006; 24 : 1151–61. [Google Scholar]
  8. Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care ? Nat Rev Cancer 2007; 7 : 545–53. [Google Scholar]
  9. Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290 : 2306–9. [Google Scholar]
  10. Cawley S, Bekiranov S, Ng HH, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNA. Cell 2004; 116 : 499–509. [Google Scholar]
  11. Vigano MA, Lamartine J, Testoni B, et al. New p63 targets in keratinocytes identified by a genome-wide approach. EMBO J 2006; 25 : 5105–16. [Google Scholar]
  12. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 : 806–11. [Google Scholar]
  13. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411 : 494–8. [Google Scholar]
  14. Baghdoyan S, Roupioz Y, Pitaval A, et al. Quantitative analysis of highly parallel transfection in cell microarrays. Nucleic Acids Res 2004; 32 : e77. [Google Scholar]
  15. Roupioz Y, Castel D, Pitaval A, et al. Puces à cellules et génomique fonctionnelle. Med Sci (Paris) 2005; 21 : 535–8. [Google Scholar]
  16. Basso K, Margolin AA, Stolovitzky G, et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005; 4 : 382–90. [Google Scholar]
  17. Balis A, Tsikitis M, Acosta-Alvear D, et al. An initial blueprint for myogenic differentiation. Genes Dev 2005; 19 : 553–69. [Google Scholar]
  18. Martin D, Ghattas B, Thieffry D. Prédire la transcription à partir des séquences génomiques. Med Sci (Paris) 2004; 20 : 1036–40. [Google Scholar]
  19. Dautry F, Ribet C. L’interférence par l’ARN : vers une génomique fonctionnelle chez les mammifères ? Med Sci (Paris) 2004; 20 : 815–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.