Free Access
Issue
Med Sci (Paris)
Volume 24, Number 1, Janvier 2008
Page(s) 15 - 17
Section Nouvelles
DOI https://doi.org/10.1051/medsci/200824115
Published online 15 January 2008
  1. Verdel A, Khochbin S. Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 1999; 274 : 2440–5. [Google Scholar]
  2. Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 2007; 26 : 5468–76. [Google Scholar]
  3. Seigneurin-Berny D, Verdel A, Curtet S, et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol 2001; 21 : 8035–44. [Google Scholar]
  4. Rumpf S, Jentsch S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol Cell 2006; 21 : 261–9. [Google Scholar]
  5. Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417 : 455–8. [Google Scholar]
  6. Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000; 10 : 524–30. [Google Scholar]
  7. Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 2003; 115 : 727–38. [Google Scholar]
  8. Bennett EJ, Bence NF, Jayakumar R, Kopito RR. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 2005; 17 : 351–65. [Google Scholar]
  9. Puyal J, Ginet V, Vaslin A, Clarke PGH. L’autophagie remplaçant de luxe du protéasome. Med Sci (Paris) 2008; 24 : 19–21. [Google Scholar]
  10. Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447 : 859–63. [Google Scholar]
  11. Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 2007; 21 : 2172–81. [Google Scholar]
  12. Arrigo AP. Chaperons moléculaires et repliement des protéines : l’exemple de certaines protéines de choc ther. Med Sci (Paris) 2005; 21 : 619–25. [Google Scholar]
  13. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5 : 761–72. [Google Scholar]
  14. Andermarcher E, Bossis G, Farras R, et al. La dégradation protéasomique : de l’adressage des protéines aux nouvelles perspectives thérapeutiques. Med Sci (Paris) 2005; 2 : 141–9. [Google Scholar]
  15. Voellmy R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 2004; 9 : 122–33. [Google Scholar]
  16. Rubinsztein DC. Autophagy induction rescues toxicity mediated by proteasome inhibition. Neuron 2007; 54 : 854–6. [Google Scholar]
  17. Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007; 27 : 3571–83. [Google Scholar]
  18. Lievens JC, Birman S. La chorée de Huntington chez la drosophile et chez la souris: vers de nouvelles pistes thérapeutiques ? Med Sci (Paris) 2003; 19 : 593–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.