Free Access
Issue
Med Sci (Paris)
Volume 24, Number 1, Janvier 2008
Page(s) 105 - 110
Section Recherche et partenariat
DOI https://doi.org/10.1051/medsci/2008241105
Published online 15 January 2008
  1. Marie PJ. Différenciation, fonction et régulation de l’ostéoblaste. Med Sci (Paris) 2001; 12 : 1252–9. [Google Scholar]
  2. Marie P, Debiais F, Cohen-Solal M, de Vernejoul MC. De nouveaux facteurs contrôlent le remodelage osseux. Rev Rhumatol 2000; 67 : 260–7. [Google Scholar]
  3. Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20 : 345–57. [Google Scholar]
  4. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001; 79 : 243–53. [Google Scholar]
  5. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423 : 337–42. [Google Scholar]
  6. Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 2005; 208 : 30–49. [Google Scholar]
  7. Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12 : 17–25. [Google Scholar]
  8. Huang JC, Sakata T, Pfelger LL, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 2004; 19 : 235–44. [Google Scholar]
  9. Spencer GJ, Utting JC, Etheridge SL, et al. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 2006; 119 : 1283–96. [Google Scholar]
  10. Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 2005; 280 : 21162–8. [Google Scholar]
  11. Kostenuik PJ, Shaloub V. Osteoprotegerin : a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des 2001; 7 : 613–35. [Google Scholar]
  12. Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 2005; 5 : 618–25. [Google Scholar]
  13. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292 : 490–5. [Google Scholar]
  14. Seeman E, Delmas P. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 2006; 354 : 2250–61. [Google Scholar]
  15. Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 2005; 34 : 1015–30. [Google Scholar]
  16. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000; 289 : 1508–14. [Google Scholar]
  17. Nakamichi Y, Udagawa N, Kobayashi Y, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol 2007; 178 : 192–200. [Google Scholar]
  18. Eghbali-Fatourechi G, Khosla S, Sanyal A, et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003; 111 : 1221–30. [Google Scholar]
  19. Martin TJ. Current, new and emerging anti-resorptive drugs; antibody blockade of RANKL action. BoneKey-Osteovision 2006; 3 : 42–6. [Google Scholar]
  20. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis : the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 2005; 20 : 177–84.7. [Google Scholar]
  21. Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999; 140 : 4367–70. [Google Scholar]
  22. Kim YH, Kim GS, Jeong-Hwa B. Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp Mol Med 2002; 34 : 145–51. [Google Scholar]
  23. Locklin RM, Khosla S, Turner RT, Riggs BL. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003; 89 : 180–90. [Google Scholar]
  24. Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Mol Ther 2001; 3 : 197–205. [Google Scholar]
  25. Bekker PJ, Holloway D, Nakanishi A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 2001; 16 : 348–60. [Google Scholar]
  26. McClung MR, Lewieki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006; 354 : 821–31. [Google Scholar]
  27. Marie PJ. Strontium ranelate : a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 2006; 18 : S11–5. [Google Scholar]
  28. Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350 : 459–68. [Google Scholar]
  29. Reginster JY, Seeman E, De Vernejoul MC, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis : treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 2005; 90 : 2816–22. [Google Scholar]
  30. Brennan T, Rybchyn MS, Conigrave AD, Mason RS. Strontium ranelate effect on proliferation and OPG expression in osteoblasts. Calcif Tissue Int 2006; 78 : S1–129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.