Accès gratuit
Numéro
Med Sci (Paris)
Volume 24, Numéro 1, Janvier 2008
Page(s) 105 - 110
Section Recherche et partenariat
DOI https://doi.org/10.1051/medsci/2008241105
Publié en ligne 15 janvier 2008
  1. Marie PJ. Différenciation, fonction et régulation de l’ostéoblaste. Med Sci (Paris) 2001; 12 : 1252–9. [Google Scholar]
  2. Marie P, Debiais F, Cohen-Solal M, de Vernejoul MC. De nouveaux facteurs contrôlent le remodelage osseux. Rev Rhumatol 2000; 67 : 260–7. [Google Scholar]
  3. Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20 : 345–57. [Google Scholar]
  4. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med 2001; 79 : 243–53. [Google Scholar]
  5. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423 : 337–42. [Google Scholar]
  6. Tanaka S, Nakamura K, Takahasi N, Suda T. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev 2005; 208 : 30–49. [Google Scholar]
  7. Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12 : 17–25. [Google Scholar]
  8. Huang JC, Sakata T, Pfelger LL, et al. PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 2004; 19 : 235–44. [Google Scholar]
  9. Spencer GJ, Utting JC, Etheridge SL, et al. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 2006; 119 : 1283–96. [Google Scholar]
  10. Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 2005; 280 : 21162–8. [Google Scholar]
  11. Kostenuik PJ, Shaloub V. Osteoprotegerin : a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des 2001; 7 : 613–35. [Google Scholar]
  12. Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr Opin Pharmacol 2005; 5 : 618–25. [Google Scholar]
  13. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 2004; 292 : 490–5. [Google Scholar]
  14. Seeman E, Delmas P. Bone quality-the material and structural basis of bone strength and fragility. N Engl J Med 2006; 354 : 2250–61. [Google Scholar]
  15. Khosla S, Riggs BL. Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin North Am 2005; 34 : 1015–30. [Google Scholar]
  16. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000; 289 : 1508–14. [Google Scholar]
  17. Nakamichi Y, Udagawa N, Kobayashi Y, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol 2007; 178 : 192–200. [Google Scholar]
  18. Eghbali-Fatourechi G, Khosla S, Sanyal A, et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003; 111 : 1221–30. [Google Scholar]
  19. Martin TJ. Current, new and emerging anti-resorptive drugs; antibody blockade of RANKL action. BoneKey-Osteovision 2006; 3 : 42–6. [Google Scholar]
  20. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis : the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 2005; 20 : 177–84.7. [Google Scholar]
  21. Hofbauer LC, Khosla S, Dunstan CR, et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999; 140 : 4367–70. [Google Scholar]
  22. Kim YH, Kim GS, Jeong-Hwa B. Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp Mol Med 2002; 34 : 145–51. [Google Scholar]
  23. Locklin RM, Khosla S, Turner RT, Riggs BL. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003; 89 : 180–90. [Google Scholar]
  24. Bolon B, Carter C, Daris M, et al. Adenoviral delivery of osteoprotegerin ameliorates bone resorption in a mouse ovariectomy model of osteoporosis. Mol Ther 2001; 3 : 197–205. [Google Scholar]
  25. Bekker PJ, Holloway D, Nakanishi A, et al. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 2001; 16 : 348–60. [Google Scholar]
  26. McClung MR, Lewieki EM, Cohen SB, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006; 354 : 821–31. [Google Scholar]
  27. Marie PJ. Strontium ranelate : a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol 2006; 18 : S11–5. [Google Scholar]
  28. Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350 : 459–68. [Google Scholar]
  29. Reginster JY, Seeman E, De Vernejoul MC, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis : treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 2005; 90 : 2816–22. [Google Scholar]
  30. Brennan T, Rybchyn MS, Conigrave AD, Mason RS. Strontium ranelate effect on proliferation and OPG expression in osteoblasts. Calcif Tissue Int 2006; 78 : S1–129. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.