Free Access
Issue
Med Sci (Paris)
Volume 23, Number 12, Décembre 2007
Page(s) 1125 - 1132
Section M/S revues
DOI https://doi.org/10.1051/medsci/200723121125
Published online 15 December 2007
  1. Smith GH, Medina DA. Morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 1988; 90 : 173–83. [Google Scholar]
  2. Williams JM, Daniel CW. Mammary ductal elongation : differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 1983; 97 : 274–90. [Google Scholar]
  3. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005; 6 : 715–25. [Google Scholar]
  4. Daniel CW, Strickland P, Friedmann Y. Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol 1995; 169 : 511–9. [Google Scholar]
  5. Taddei I, Faraldo MM, Teuliere J, et al. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 2003; 8 : 383–94. [Google Scholar]
  6. Strickland P, Shin GC, Plump A, et al. Slit 2 and Netrin 1 act synergistically to generate tubular bi-layers during ductal morphogenesis. Development 2006; 133 : 823–32. [Google Scholar]
  7. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19 : 515–20. [Google Scholar]
  8. Young LJ, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol 1971; 6 : 49–56. [Google Scholar]
  9. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125 : 1921–30. [Google Scholar]
  10. Weissman, IL, Anderson, DJ, Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17 : 387–403. [Google Scholar]
  11. Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996; 39 : 21–31. [Google Scholar]
  12. Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat Rev Cancer 2003; 3 : 832–44. [Google Scholar]
  13. Smith GH. Mammary stem cells come of age, prospectively. Trends Mol Med 2006; 12 : 287–9. [Google Scholar]
  14. Visvader JE, Lindeman GJ. Mammary stem cells and mammopoiesis. Cancer Res 2006; 66 : 9798–801. [Google Scholar]
  15. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005; 118 : 3585–94. [Google Scholar]
  16. Bickenbach, JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 1981; 60 : 1611–20. [Google Scholar]
  17. Cairns J. Mutation selection and the natural history of cancer. Nature 1975; 255 : 197–200. [Google Scholar]
  18. Smith GH. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 2005; 132 : 681–7. [Google Scholar]
  19. Zeps N, Dawkins HJ, Papadimitriou JM, et al. Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell Tissue Res 1996; 286 : 525–36. [Google Scholar]
  20. Booth BW, Smith GH. Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 2006; 8 : R49. [Google Scholar]
  21. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell 2007; 128 : 445–58. [Google Scholar]
  22. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439 : 84–8. [Google Scholar]
  23. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439 : 993–7. [Google Scholar]
  24. Welm BE, Tepera SB, Venezia T, et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245 : 42–56. [Google Scholar]
  25. Asselin-Labat ML, Sutherland KD, Barker H, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9 : 201–9. [Google Scholar]
  26. Asselin-Labat ML, Shackleton M, Stingl J, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 2006; 98 : 1011–4. [Google Scholar]
  27. Sleeman KE, Kendrick H, Robertson D, et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 2007; 176 : 19–26. [Google Scholar]
  28. Deugnier MA, Faraldo MM, Janji B, et al. EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties. J Cell Biol 2002; 159 : 453–63. [Google Scholar]
  29. Deugnier MA, Faraldo MM, Teuliere J, et al. Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev Biol 2006; 293 : 414–25. [Google Scholar]
  30. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127 : 1041–55. [Google Scholar]
  31. Wagner KU, Boulanger CA, Henry MD, et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 2002; 129 : 1377–86. [Google Scholar]
  32. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 2005; 24 : 552–60. [Google Scholar]
  33. Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol 2007; 303 : 29–44. [Google Scholar]
  34. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406 : 747–52. [Google Scholar]
  35. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100 : 8418–23. [Google Scholar]
  36. Charafe-Jauffret E, Chaffanet M, Bertucci F, et al. Les cancers du sein : vers un modèle cellulaire et moléculaire intégré. Med Sci (Paris) 2007; 23 : 626–32. [Google Scholar]
  37. Clarke MF, Fuller M. Stem cells and cancer: two faces of Eve. Cell 2006; 124 : 1111–15. [Google Scholar]
  38. Faraldo MM, Teuliere J, Deugnier MA, et al. Myoepithelial cells in the control of mammary development and tumorigenesis: data from genetically modified mice. J Mammary Gland Biol Neoplasia 2005; 10 : 211–9. [Google Scholar]
  39. Teuliere J, Faraldo MM, Deugnier MA, et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005; 132 : 267–77. [Google Scholar]
  40. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 2007; 177 : 87–101. [Google Scholar]
  41. Proia DA, Kuperwasser C. Reconstruction of human mammary tissues in a mouse model. Nat Protoc 2006; 1 : 206–14. [Google Scholar]
  42. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17 : 1253–70. [Google Scholar]
  43. Asselin-Labat ML. Cellules souches et progéniteurs dans la glande mammaire : rôle critique du facteur de transcription Gata-3. Med Sci (Paris) 2007; 23 : 1075–7. [Google Scholar]
  44. Nasarre P, Constantin B, Drabkin HA, Roche J. Sémaphorines et cancers : état des lieux. Med Sci (Paris) 2005; 21 : 641–7. [Google Scholar]
  45. Ginestier C, Korkaya H, Dontu G, et al. La cellule souche cancéreuse : un pilote aux commandes du cancer du sein. Med Sci (Paris) 2007; 23 : 1133–39. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.