Accès gratuit
Numéro
Med Sci (Paris)
Volume 23, Numéro 12, Décembre 2007
Page(s) 1125 - 1132
Section M/S revues
DOI https://doi.org/10.1051/medsci/200723121125
Publié en ligne 15 décembre 2007
  1. Smith GH, Medina DA. Morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 1988; 90 : 173–83.
  2. Williams JM, Daniel CW. Mammary ductal elongation : differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol 1983; 97 : 274–90.
  3. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol 2005; 6 : 715–25.
  4. Daniel CW, Strickland P, Friedmann Y. Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol 1995; 169 : 511–9.
  5. Taddei I, Faraldo MM, Teuliere J, et al. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia 2003; 8 : 383–94.
  6. Strickland P, Shin GC, Plump A, et al. Slit 2 and Netrin 1 act synergistically to generate tubular bi-layers during ductal morphogenesis. Development 2006; 133 : 823–32.
  7. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19 : 515–20.
  8. Young LJ, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol 1971; 6 : 49–56.
  9. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125 : 1921–30.
  10. Weissman, IL, Anderson, DJ, Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17 : 387–403.
  11. Smith GH. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 1996; 39 : 21–31.
  12. Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat Rev Cancer 2003; 3 : 832–44.
  13. Smith GH. Mammary stem cells come of age, prospectively. Trends Mol Med 2006; 12 : 287–9.
  14. Visvader JE, Lindeman GJ. Mammary stem cells and mammopoiesis. Cancer Res 2006; 66 : 9798–801.
  15. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005; 118 : 3585–94.
  16. Bickenbach, JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 1981; 60 : 1611–20.
  17. Cairns J. Mutation selection and the natural history of cancer. Nature 1975; 255 : 197–200.
  18. Smith GH. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 2005; 132 : 681–7.
  19. Zeps N, Dawkins HJ, Papadimitriou JM, et al. Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell Tissue Res 1996; 286 : 525–36.
  20. Booth BW, Smith GH. Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 2006; 8 : R49.
  21. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell 2007; 128 : 445–58.
  22. Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439 : 84–8.
  23. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439 : 993–7.
  24. Welm BE, Tepera SB, Venezia T, et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245 : 42–56.
  25. Asselin-Labat ML, Sutherland KD, Barker H, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9 : 201–9.
  26. Asselin-Labat ML, Shackleton M, Stingl J, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 2006; 98 : 1011–4.
  27. Sleeman KE, Kendrick H, Robertson D, et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 2007; 176 : 19–26.
  28. Deugnier MA, Faraldo MM, Janji B, et al. EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties. J Cell Biol 2002; 159 : 453–63.
  29. Deugnier MA, Faraldo MM, Teuliere J, et al. Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev Biol 2006; 293 : 414–25.
  30. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127 : 1041–55.
  31. Wagner KU, Boulanger CA, Henry MD, et al. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development 2002; 129 : 1377–86.
  32. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 2005; 24 : 552–60.
  33. Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol 2007; 303 : 29–44.
  34. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406 : 747–52.
  35. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100 : 8418–23.
  36. Charafe-Jauffret E, Chaffanet M, Bertucci F, et al. Les cancers du sein : vers un modèle cellulaire et moléculaire intégré. Med Sci (Paris) 2007; 23 : 626–32.
  37. Clarke MF, Fuller M. Stem cells and cancer: two faces of Eve. Cell 2006; 124 : 1111–15.
  38. Faraldo MM, Teuliere J, Deugnier MA, et al. Myoepithelial cells in the control of mammary development and tumorigenesis: data from genetically modified mice. J Mammary Gland Biol Neoplasia 2005; 10 : 211–9.
  39. Teuliere J, Faraldo MM, Deugnier MA, et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005; 132 : 267–77.
  40. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol 2007; 177 : 87–101.
  41. Proia DA, Kuperwasser C. Reconstruction of human mammary tissues in a mouse model. Nat Protoc 2006; 1 : 206–14.
  42. Dontu G, Abdallah WM, Foley JM, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17 : 1253–70.
  43. Asselin-Labat ML. Cellules souches et progéniteurs dans la glande mammaire : rôle critique du facteur de transcription Gata-3. Med Sci (Paris) 2007; 23 : 1075–7.
  44. Nasarre P, Constantin B, Drabkin HA, Roche J. Sémaphorines et cancers : état des lieux. Med Sci (Paris) 2005; 21 : 641–7.
  45. Ginestier C, Korkaya H, Dontu G, et al. La cellule souche cancéreuse : un pilote aux commandes du cancer du sein. Med Sci (Paris) 2007; 23 : 1133–39.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.