Free Access
Issue
Med Sci (Paris)
Volume 23, Number 3, Mars 2007
Page(s) 297 - 302
Section M/S revues
DOI https://doi.org/10.1051/medsci/2007233297
Published online 15 March 2007
  1. Ueland PM, Rozen R (eds). MTHFR polymorphisms and disease. Georgetown: Landes Bioscience/Eurekah.com, 2005 : 210 p. [Google Scholar]
  2. Mudd SH, Uhlendorf BW, Freeman JM, et al. Homocystinuria associated with decreased methylenetetrahydrofolate reductase activity. Biochem Biophys Res Commun 1972; 46 : 905–12. [Google Scholar]
  3. Kang SS, Zhou J, Wong PW, et al. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988; 43 : 414–21. [Google Scholar]
  4. Goyette P, Sumner JS, Milos R, et al. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 1994; 7 : 195–200. [Google Scholar]
  5. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10 : 111–3. [Google Scholar]
  6. Tran P, Leclerc D, Chan M, et al. Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome 2002; 13 : 483–92. [Google Scholar]
  7. Pickell L, Tran P, Leclerc D, et al. Regulatory studies of murine methylenetetrahydrofolate reductase reveal two major promoters and NF-kappaB sensitivity. Biochim Biophys Acta 2005; 1731 : 104–14. [Google Scholar]
  8. Selzer RR, Rosenblatt DS, Laxova R, Hogan K. Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 2003; 349 : 45–50. [Google Scholar]
  9. Tonetti C, Saudubray JM, Echenne B, et al. Relations between molecular and biological abnormalities in 11 families from siblings affected with methylenetetrahydrofolate reductase deficiency. Eur J Pediatr 2003; 162 : 466–75. [Google Scholar]
  10. Martin YN, Salavaggione OE, Eckloff BW, et al. Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenet Genomics 2006; 16 : 265–77. [Google Scholar]
  11. Morel CF, Scott P, Christensen E, et al. Prenatal diagnosis for severe methylenetetrahydrofolate reductase deficiency by linkage analysis and enzymatic assay. Mol Genet Metab 2005; 85 : 115–20. [Google Scholar]
  12. Jacques PF, Bostom AG, Williams RR, et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996; 93 : 7–9. [Google Scholar]
  13. Guenther BD, Sheppard CA, Tran P, et al. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol 1999; 6 : 359–65. [Google Scholar]
  14. Herrmann FH, Salazar-Sanchez L, Schröder W, et al. Prevalence of molecular risk factors FV Leiden, FV HR2, FII 20210G>A and MTHFR 677C > T in different populations and ethnic groups of Germany, Costa Rica and India. Indian J Hum Genet 2001; 1 : 33–9. [Google Scholar]
  15. Zalavras CG, Giotopoulou S, Dokou E, et al. Lack of association between the C677T mutation in the 5,10-methylenetetrahydrofolate reductase gene and venous thromboembolism in Northwestern Greece. Int Angiol 2002; 21 : 268–71. [Google Scholar]
  16. Junien C, Gallou-Kabani C, Vigé A, Gross MS. Épigénomique nutritionelle du syndrome métabolique. Med Sci (Paris) 2005; 21 : 396–404. [Google Scholar]
  17. Deltour S, Chopin V, Leprince D. Modifications épigénétiques et cancer. Med Sci (Paris) 2005; 21 : 405–11. [Google Scholar]
  18. Rozen R. Methylenetetrahydrofolate reductase gene polymorphism - clinical implications. In : Fuchs J, Podda M, eds. Encyclopedia of medical genomics and proteomics. New York: Taylor and Francis Group, 2005. DOI: 10.1081/E-EDGP-120030861. [Google Scholar]
  19. Mills JL, McPartlin JM, Kirke PN, et al. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 1995; 345 : 149–51. [Google Scholar]
  20. Steegers-Theunissen RP, Boers GH, Blom HJ, et al. Neural tube defects and elevated homocysteine levels in amniotic fluid. Am J Obstet Gynecol 1995; 172 : 1436–41. [Google Scholar]
  21. Van der Put NMJ, Steegers-Theunissen RPM, Frosst P, et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995; 346 : 1070–1. [Google Scholar]
  22. Heijmans BT, Boer JM, Suchiman HE, et al. A common variant of the methylenetetrahydrofolate reductase gene (1p36) is associated with an increased risk of cancer. Cancer Res 2003; 63 : 1249–53. [Google Scholar]
  23. Chen Z, Karaplis AC, Ackerman SL, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001; 10 : 433–43. [Google Scholar]
  24. Chen Z, Ge B, Hudson TJ, Rozen R. Microarray analysis of brain RNA in mice with methylenetetrahydrofolate reductase deficiency and hyperhomocysteinemia. Brain Res Gene Expr Patterns 2002; 1 : 89–93. [Google Scholar]
  25. Chen Z, Schwahn BC, Wu Q, et al. Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase. Int J Dev Neurosci 2005; 23 : 465–74. [Google Scholar]
  26. Schwahn BC, Chen Z, Laryea MD, et al. Homocysteine-betaine interactions in a murine model of 5,10-methylenetetrahydrofolate reductase deficiency. FASEB J 2003; 17 : 512–4. [Google Scholar]
  27. Mikael LG, Genest J Jr, Rozen R. Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res 2006; 98 : 564–71. [Google Scholar]
  28. Li D, Pickell L, Liu Y, et al. Maternal methylenetetrahydrofolate reductase deficiency and low dietary folate lead to adverse reproductive outcomes and congenital heart defects in mice. Am J Clin Nutr 2005; 82 : 188–95. [Google Scholar]
  29. Knock E, Deng, L, Wu Q, et al. Low dietary folate initiates intestinal tumours in mice, with altered expression of G2M checkpoint regulators Plk1 and Cdc25c. Cancer Res 2006; 66 : 10341–56. [Google Scholar]
  30. Yamada K, Strahler JR, Andrews PC, Matthews RG. Regulation of human methylenetetrahydrofolate reductase by phosphorylation. Proc Natl Acad Sci USA. 2005; 102 : 10454–9. [Google Scholar]
  31. Turleau C, Vekemans M. Nouvelles données en génétique chromosomique. Med Sci (Paris) 2005; 21 : 940–6. [Google Scholar]
  32. Cohen V, Panet-Raymond V, Sabbaghian N, et al. Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin Cancer Res 2003; 9 : 1611–5. [Google Scholar]
  33. Kim YI. 5,10-Methylenetetrahydrofolate reductase polymorphisms and pharmacogenetics: a new role of single nucleotide polymorphisms in the folate metabolic pathway in human health and disease. Nutr Rev 2005; 63 : 398–407. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.