Free Access
Med Sci (Paris)
Volume 23, Number 3, Mars 2007
Page(s) 291 - 296
Section M/S revues
Published online 15 March 2007
  1. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003; 4 : 181–91. [Google Scholar]
  2. Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature 2003; 426 : 891–4. [Google Scholar]
  3. Kaufman RJ. Orchestrating the unfolded protein response in health and disease. J Clin Invest 2002; 110 : 1389–98. [Google Scholar]
  4. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569 : 29–63. [Google Scholar]
  5. Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol 2004; 14 : 20–8. [Google Scholar]
  6. Garlatti M, Barouki R. Le stress du réticulum endoplasmique : adaptation et toxicité. Med Sci (Paris) 2002; 18 : 585–94. [Google Scholar]
  7. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397 : 271–4. [Google Scholar]
  8. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000; 6 : 1099–108. [Google Scholar]
  9. Yoshida H, Haze K, Yanagi H, et al. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 1998; 273 : 33741–9. [Google Scholar]
  10. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23 : 7448–59. [Google Scholar]
  11. Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 2006; 66 : S102–9. [Google Scholar]
  12. Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 2001; 412 : 300–7. [Google Scholar]
  13. Sriburi R, Jackowski S, Mori K, Brewer JW. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 2004; 167 : 35–41. [Google Scholar]
  14. Delepine M, Nicolino M, Barrett T, et al. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000; 25 : 406–9. [Google Scholar]
  15. Harding HP, Zeng H, Zhang Y, J et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 2001; 7 : 1153–63. [Google Scholar]
  16. Ladiges WC, Knoblaugh SE, Morton JF, et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes 2005; 54 : 1074–81. [Google Scholar]
  17. Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998; 20 : 143–8. [Google Scholar]
  18. Riggs AC, Bernal-Mizrachi E, Ohsugi M, et al. Mice conditionally lacking the Wolfram gene in pancreatic islet beta cells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia 2005; 48 : 2313–21. [Google Scholar]
  19. Araki E, Oyadomari S, Mori M: Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus. Exp Biol Med (Maywood) 2003; 228 :1213–7. [Google Scholar]
  20. Oyadori S, Koizumi A, Takeda K, et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest 2002; 109 : 525–32. [Google Scholar]
  21. Özcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science 2004; 306 : 457–61. [Google Scholar]
  22. Nakatani Y, Kaneto H, Kawamori D, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005; 280 : 847–51. [Google Scholar]
  23. Özcan U, Yilmaz E, Özcan L et al. Chemical chaperones reduces ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313 :1137–40. [Google Scholar]
  24. Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 2002; 16 : 1345–55. [Google Scholar]
  25. Katayama T, Imaizumi K, Manabe T, et al. Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 2004; 28 : 67–78. [Google Scholar]
  26. Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 2005; 30 : 935–939. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.