Free Access
Med Sci (Paris)
Volume 23, Number 2, Février 2007
Page(s) 180 - 186
Section M/S revues
Published online 15 February 2007
  1. De la Torre JC, Fortin T. A chronic physiological rat model of dementia. Behav Brain Res 1994; 63 : 35–40. [Google Scholar]
  2. Spencer PS, Nunn PB, Hugon J, et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987; 237 : 517–22. [Google Scholar]
  3. Caparros-Lefebvre D, Sergeant N, Lees A, et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 2002; 125 : 801–11. [Google Scholar]
  4. Langston JW, Ballard P, Tetrud J, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219 : 979–80. [Google Scholar]
  5. D’Arcangelo G, G. Miao G, Chen SC, et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374 : 719–23. [Google Scholar]
  6. Hong SE, Shugart YY, Huang DT, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26 : 93–6. [Google Scholar]
  7. Impagnatiello F, Guidotti AR, Pesold C, et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95 : 15718–23. [Google Scholar]
  8. Lane PW. New mutation: weaver, wv. Mouse News Lett 1964; 30 : 32–3. [Google Scholar]
  9. Schmidt MJ, Sawyer BD, Perry KW, et al. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982; 2 : 376–80. [Google Scholar]
  10. Rezai Z, Yoon CH. Abnormal rate of granule cell migration in the cerebellum of weaver mutant mice. Dev Biol 1972; 29 : 17–26. [Google Scholar]
  11. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152 : 133–61. [Google Scholar]
  12. Patil N, Cox DR, Bhat D, et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 1995; 11 : 126–9. [Google Scholar]
  13. Bandmann O, Davis MB, Mrasden CD, Wood NW. The human homologue of the weaver mouse gene in familial and sporadic Parkinson’s disease. Neuroscience 1996; 72 : 877–9. [Google Scholar]
  14. Gold DA, Baek SH, Schork NJ, et al. RORα coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 2003; 40 : 1119–31. [Google Scholar]
  15. Blanchard V, Moussaoui S, Czech C, et al. Time sequence of maturation of dystrophic neurites associated with Ab deposits in APP/PS1 transgenic mice. Exp Neurol 2003; 184 : 247–63. [Google Scholar]
  16. Schmitz C, Rutten BP, Pielen A, et al. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 2004; 164 : 1495–502. [Google Scholar]
  17. Langui D, Girardot N, El Hachimi H, et al. Subcellular topography of neuronal Ab peptide in APPxPS1 transgenic mice. Am J Pathol 2004; 165 : 1465–77. [Google Scholar]
  18. Robbins EM, Betensky RA, Domnitz SB, et al. Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J Neurosci 2006; 26 : 365–71. [Google Scholar]
  19. Götz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 2001; 293 : 1491–5. [Google Scholar]
  20. Ghetti B, Hutton ML, Wszolek ZK. Fronto-temporal dementia and parkinsonism linked to chromosome 17 associated with Tau gene mutations (FTDP-17T). In : Dickson D, ed. Neurodegeneration: the molecular pathology of dementia and movement disorders. Basel : ISN Neuropath Press, 2003 : 86–102. [Google Scholar]
  21. Probst A, Gotz J, Wiederhold KH, et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 2000; 99 : 469–81. [Google Scholar]
  22. Spittaels K, Van den Haute C, Van Dorpe J, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999; 155 : 2153–65. [Google Scholar]
  23. Brion JP, Tremp G, Octave JN. Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease. Am J Pathol 1999; 154 : 255–70. [Google Scholar]
  24. Behar L, Marx R, Sadot E, et al. Cis-acting signals and trans-acting proteins are involved in tau mRNA targeting into neurites of differentiating neuronal cells. Int J Dev Neurosci 1995; 13 : 113–27. [Google Scholar]
  25. Andorfer C, Acker CM, Kress Y, et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005; 25 : 5446–54. [Google Scholar]
  26. SantaCruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309 : 476–81. [Google Scholar]
  27. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276 : 2045–7. [Google Scholar]
  28. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18 : 106–8. [Google Scholar]
  29. Kahle PJ, Neumann M, Ozmen L, et al. Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 2000; 20 : 6365–73. [Google Scholar]
  30. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287 : 1265–9. [Google Scholar]
  31. Giasson BI, Duda JE, Quinn SM, et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 2002; 34 : 521–33. [Google Scholar]
  32. Fleming SM, Salcedo J, Fernagut PO, et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci 2004; 24 : 9434–40. [Google Scholar]
  33. Masliah E, Rockenstein E, Veinbergs I, et al. β-amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 2001; 98 : 12245–50. [Google Scholar]
  34. Schmidt ML, Martin JA, Lee VM, Trojanowski JQ. Convergence of Lewy bodies and neurofibrillary tangles in amygdala neurons of Alzheimer’s disease and Lewy body disorders. Acta Neuropathol 1996; 91 : 475–81. [Google Scholar]
  35. Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983; 306 : 234–8. [Google Scholar]
  36. The Huntington’s disease collaborative research group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72 : 971–83. [Google Scholar]
  37. Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90 : 537–48. [Google Scholar]
  38. DiFiglia M, Sapp E, Chase KO, et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277 : 1990–3. [Google Scholar]
  39. Van Dellen A, Blakemore C, Deacon R, et al. Delaying the onset of Huntington’s in mice. Nature 2000; 404 : 721–2. [Google Scholar]
  40. Koeppen AH. The hereditary ataxias. J Neuropathol Exp Neurol 1998; 57 : 531–43. [Google Scholar]
  41. Yvert G, Lindenberg K, Picaud S, et al. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 2000; 9 : 2491–506. [Google Scholar]
  42. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95 : 55–66. [Google Scholar]
  43. Everett C, Wood N. Trinucleotide repeats and neurodegenerative disease. Brain 2004; 127 : 2385–405. [Google Scholar]
  44. Periquet M, Corti O, Jacquier S, Brice A. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 2005; 95 : 1259–76. [Google Scholar]
  45. Simon D, Seznec H, Gansmuller A, et al. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 2004; 24 : 1987–95. [Google Scholar]
  46. Puccio H, Simon D, Cossee M, et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 2001; 27 : 181–6. [Google Scholar]
  47. Ristow M, Mulder H, Pomplun D, et al. Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass. J Clin Invest 2003; 112 : 527–34. [Google Scholar]
  48. Prusiner SB. Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 1996; 21 : 482–7. [Google Scholar]
  49. Basler K, Oesch B, Scott M, et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986; 46 : 417–28. [Google Scholar]
  50. Bueler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993; 73 : 1339–47. [Google Scholar]
  51. Telling GC, Scott M, Hsiao KK, et al. Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc Natl Acad Sci USA 1994; 91 : 9936–40. [Google Scholar]
  52. Feany MB, Bender WW. A drosophila model of Parkinson’s disease. Nature 2000; 404 : 394–8. [Google Scholar]
  53. Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with Huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 2001; 98 : 1811–6. [Google Scholar]
  54. Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37 : 349–50. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.