Accès gratuit
Med Sci (Paris)
Volume 23, Numéro 2, Février 2007
Page(s) 180 - 186
Section M/S revues
Publié en ligne 15 février 2007
  1. De la Torre JC, Fortin T. A chronic physiological rat model of dementia. Behav Brain Res 1994; 63 : 35–40.
  2. Spencer PS, Nunn PB, Hugon J, et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 1987; 237 : 517–22.
  3. Caparros-Lefebvre D, Sergeant N, Lees A, et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 2002; 125 : 801–11.
  4. Langston JW, Ballard P, Tetrud J, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219 : 979–80.
  5. D’Arcangelo G, G. Miao G, Chen SC, et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 1995; 374 : 719–23.
  6. Hong SE, Shugart YY, Huang DT, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000; 26 : 93–6.
  7. Impagnatiello F, Guidotti AR, Pesold C, et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95 : 15718–23.
  8. Lane PW. New mutation: weaver, wv. Mouse News Lett 1964; 30 : 32–3.
  9. Schmidt MJ, Sawyer BD, Perry KW, et al. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982; 2 : 376–80.
  10. Rezai Z, Yoon CH. Abnormal rate of granule cell migration in the cerebellum of weaver mutant mice. Dev Biol 1972; 29 : 17–26.
  11. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152 : 133–61.
  12. Patil N, Cox DR, Bhat D, et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 1995; 11 : 126–9.
  13. Bandmann O, Davis MB, Mrasden CD, Wood NW. The human homologue of the weaver mouse gene in familial and sporadic Parkinson’s disease. Neuroscience 1996; 72 : 877–9.
  14. Gold DA, Baek SH, Schork NJ, et al. RORα coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 2003; 40 : 1119–31.
  15. Blanchard V, Moussaoui S, Czech C, et al. Time sequence of maturation of dystrophic neurites associated with Ab deposits in APP/PS1 transgenic mice. Exp Neurol 2003; 184 : 247–63.
  16. Schmitz C, Rutten BP, Pielen A, et al. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 2004; 164 : 1495–502.
  17. Langui D, Girardot N, El Hachimi H, et al. Subcellular topography of neuronal Ab peptide in APPxPS1 transgenic mice. Am J Pathol 2004; 165 : 1465–77.
  18. Robbins EM, Betensky RA, Domnitz SB, et al. Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J Neurosci 2006; 26 : 365–71.
  19. Götz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 2001; 293 : 1491–5.
  20. Ghetti B, Hutton ML, Wszolek ZK. Fronto-temporal dementia and parkinsonism linked to chromosome 17 associated with Tau gene mutations (FTDP-17T). In : Dickson D, ed. Neurodegeneration: the molecular pathology of dementia and movement disorders. Basel : ISN Neuropath Press, 2003 : 86–102.
  21. Probst A, Gotz J, Wiederhold KH, et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol (Berl) 2000; 99 : 469–81.
  22. Spittaels K, Van den Haute C, Van Dorpe J, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999; 155 : 2153–65.
  23. Brion JP, Tremp G, Octave JN. Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease. Am J Pathol 1999; 154 : 255–70.
  24. Behar L, Marx R, Sadot E, et al. Cis-acting signals and trans-acting proteins are involved in tau mRNA targeting into neurites of differentiating neuronal cells. Int J Dev Neurosci 1995; 13 : 113–27.
  25. Andorfer C, Acker CM, Kress Y, et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005; 25 : 5446–54.
  26. SantaCruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309 : 476–81.
  27. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276 : 2045–7.
  28. Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18 : 106–8.
  29. Kahle PJ, Neumann M, Ozmen L, et al. Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. J Neurosci 2000; 20 : 6365–73.
  30. Masliah E, Rockenstein E, Veinbergs I, et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287 : 1265–9.
  31. Giasson BI, Duda JE, Quinn SM, et al. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 2002; 34 : 521–33.
  32. Fleming SM, Salcedo J, Fernagut PO, et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. J Neurosci 2004; 24 : 9434–40.
  33. Masliah E, Rockenstein E, Veinbergs I, et al. β-amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 2001; 98 : 12245–50.
  34. Schmidt ML, Martin JA, Lee VM, Trojanowski JQ. Convergence of Lewy bodies and neurofibrillary tangles in amygdala neurons of Alzheimer’s disease and Lewy body disorders. Acta Neuropathol 1996; 91 : 475–81.
  35. Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983; 306 : 234–8.
  36. The Huntington’s disease collaborative research group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72 : 971–83.
  37. Davies SW, Turmaine M, Cozens BA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90 : 537–48.
  38. DiFiglia M, Sapp E, Chase KO, et al. Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997; 277 : 1990–3.
  39. Van Dellen A, Blakemore C, Deacon R, et al. Delaying the onset of Huntington’s in mice. Nature 2000; 404 : 721–2.
  40. Koeppen AH. The hereditary ataxias. J Neuropathol Exp Neurol 1998; 57 : 531–43.
  41. Yvert G, Lindenberg K, Picaud S, et al. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 2000; 9 : 2491–506.
  42. Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95 : 55–66.
  43. Everett C, Wood N. Trinucleotide repeats and neurodegenerative disease. Brain 2004; 127 : 2385–405.
  44. Periquet M, Corti O, Jacquier S, Brice A. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 2005; 95 : 1259–76.
  45. Simon D, Seznec H, Gansmuller A, et al. Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 2004; 24 : 1987–95.
  46. Puccio H, Simon D, Cossee M, et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 2001; 27 : 181–6.
  47. Ristow M, Mulder H, Pomplun D, et al. Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass. J Clin Invest 2003; 112 : 527–34.
  48. Prusiner SB. Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 1996; 21 : 482–7.
  49. Basler K, Oesch B, Scott M, et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986; 46 : 417–28.
  50. Bueler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993; 73 : 1339–47.
  51. Telling GC, Scott M, Hsiao KK, et al. Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc Natl Acad Sci USA 1994; 91 : 9936–40.
  52. Feany MB, Bender WW. A drosophila model of Parkinson’s disease. Nature 2000; 404 : 394–8.
  53. Holbert S, Denghien I, Kiechle T, et al. The Gln-Ala repeat transcriptional activator CA150 interacts with Huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci USA 2001; 98 : 1811–6.
  54. Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005; 37 : 349–50.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.