Free Access
Med Sci (Paris)
Volume 23, Number 2, Février 2007
Page(s) 161 - 166
Section M/S revues
Published online 15 February 2007
  1. Fischer A, Le Deist F, Hacein-Bey-Abina S, et al. Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev 2005; 203 : 98–109. [Google Scholar]
  2. Hirschhorn R. Immunodeficiency disease due to deficiency of adenosine deaminase. In: Ochs HD, Smith CIE, Puck JM, eds. Primary immunodeficiency diseases. A molecular and genetic approach. New York : Oxford University Press, 1999 : 121–39. [Google Scholar]
  3. Leonard WJ, Noguchi M, Russell SM, McBride OW. The molecular basis of X-linked severe combined immunodeficiency: the role of the interleukin-2 receptor gamma chain as a common gamma chain, gamma c. Immunol Rev 1994; 138 : 61–86. [Google Scholar]
  4. Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377 : 65–8. [Google Scholar]
  5. Puel A, Ziegler SF, Buckley RH, Leonard WJ. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet 1998; 20 : 394–7. [Google Scholar]
  6. Schwarz K, Gauss GH, Ludwig L, et al. RAG mutations in human B cell-negative SCID. Science 1996; 274 : 97–9. [Google Scholar]
  7. Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105 : 177–86. [Google Scholar]
  8. Kung C, Pingel JT, Heikinheimo M, et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med 2000; 6 : 343–5. [Google Scholar]
  9. Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med 2003; 349 : 1821–8. [Google Scholar]
  10. De Saint Basile G, Geissmann F, Flori E, et al. Severe combined immunodeficiency caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest 2004; 114 : 1512–7. [Google Scholar]
  11. Werlen G, Palmer E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr Opin Immunol 2002; 14 : 299–305. [Google Scholar]
  12. Call ME, Wucherpfennig KW. Molecular mechanisms for the assembly of the T cell receptor-CD3 complex. Mol Immunol 2004; 40 : 1295–305. [Google Scholar]
  13. Haks MC, Krimpenfort P, Borst J, Kruisbeek AM. The CD3gamma chain is essential for development of both the TCRalphabeta and TCRgammadelta lineages. EMBO J 1998; 17 : 1871–82. [Google Scholar]
  14. Dave VP, Cao Z, Browne C, et al. CD3 delta deficiency arrests development of the alpha beta but not the gamma delta T cell lineage. EMBO J 1997; 16 : 1360–70. [Google Scholar]
  15. Love PE, Shores EW, Johnson MD, et al. T cell development in mice that lack the zeta chain of the T cell antigen receptor complex. Science 1993; 261 : 918–21. [Google Scholar]
  16. Takada H, Nomura A, Roifman CM, Hara T. Severe combined immunodeficiency caused by a splicing abnormality of the CD3delta gene. Eur J Pediatr 2005; 164 : 311–4. [Google Scholar]
  17. Fukuhara K, Okumura M, Shiono H, et al. A study on CD45 isoform expression during T-cell development and selection events in the human thymus. Hum Immunol 2002; 63 : 394–404. [Google Scholar]
  18. Delgado P, Fernandez E, Dave V, et al. CD3delta couples T-cell receptor signalling to ERK activation and thymocyte positive selection. Nature 2000; 406 : 426–30. [Google Scholar]
  19. Malissen M, Gillet A, Ardouin L, et al. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 1995; 14 : 4641–53. [Google Scholar]
  20. Sommers CL, Dejarnette JB, Huang K, et al. Function of CD3 epsilon-mediated signals in T cell development. J Exp Med 2000; 192 : 913–19. [Google Scholar]
  21. Soudais C, de Villartay JP, Le Deist F, et al. Independent mutations of the human CD3-epsilon gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nat Genet 1993; 3 : 77–81. [Google Scholar]
  22. Arnaiz-Villena A, Timon M, Corell A, et al. Brief report: primary immunodeficiency caused by mutations in the gene encoding the CD3-gamma subunit of the T-lymphocyte receptor. N Engl J Med 1992; 327 : 529–33. [Google Scholar]
  23. Regueiro JR, Pacheco A, Alvarez-Zapata D, et al. CD3 deficiencies. In: Ochs HD, Smith CIE, Puck JM, eds. Primary immunodeficiencies diseases: a moleclular and genetic approach. New York : Oxford University Press, 1999 : 189–97. [Google Scholar]
  24. Van Tol M, Sanal O, Langlois Van den Bergh R, et al. CD3γ chain deficiency leads to a cellular immunodeficiency with a mild clinical presentation. Immmunologist 1997; (suppl 1): 41–3. [Google Scholar]
  25. Torres PS, Alcover A, Zapata DA, et al. TCR dynamics in human mature T lymphocytes lacking CD3 gamma. J Immunol 2003; 170 : 5947–55. [Google Scholar]
  26. Rieux-Laucat F, Hivroz C, Lim A, et al. Inherited and somatic CD3zeta mutations in a patient with T-cell deficiency. N Engl J Med 2006; 354 : 1913–21. [Google Scholar]
  27. Malissen M, Gillet A, Rocha B, et al. T cell development in mice lacking the CD3-zeta/eta gene. EMBO J 1993; 12 : 4347–55. [Google Scholar]
  28. Lin SY, Ardouin L, Gillet A, et al. The single positive T cells found in CD3-zeta/eta−/− mice overtly react with self-major histocompatibility complex molecules upon restoration of normal surface density of T cell receptor-CD3 complex. J Exp Med 1997; 185 : 707–15. [Google Scholar]
  29. Stephan V, Wahn V, Le Deist F, et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med 1996; 335 : 1563–7. [Google Scholar]
  30. Ariga T, Yamada M, Sakiyama Y, Tatsuzawa O. A case of Wiskott-Aldrich syndrome with dual mutations in exon 10 of the WASP gene: an additional de novo one-base insertion, which restores frame shift due to an inherent one-base deletion, detected in the major population of the patient’s peripheral blood lymphocytes. Blood 1998; 92 : 699–701. [Google Scholar]
  31. Wada T, Toma T, Okamoto H, et al. Oligoclonal expansion of T lymphocytes with multiple second-site mutations leads to Omenn syndrome in a patient with RAG1-deficient severe combined immunodeficiency. Blood 2005; 106 : 2099–101. [Google Scholar]
  32. Hirschhorn R, Yang DR, Puck JM, et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat Genet 1996; 13 : 290–5. [Google Scholar]
  33. Arpaia E, Shahar M, Dadi H, et al. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell 1994; 76 : 947–58. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.