Free Access
Med Sci (Paris)
Volume 23, Number 2, Février 2007
Page(s) 151 - 160
Section M/S revues
Published online 15 February 2007
  1. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404 : 193–7. [Google Scholar]
  2. Kondo M, Weissman IL, Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91 : 661–72. [Google Scholar]
  3. Manz MG, Miyamoto T, Akashi K, Weissman IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 2002; 99 : 11872–7. [Google Scholar]
  4. Galy AH, Cen D, Travis M, et al. Delineation of T-progenitor cell activity within the CD34+ compartment of adult bone marrow. Blood 1995; 85 : 2770–8. [Google Scholar]
  5. Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 1995; 3 : 459–73. [Google Scholar]
  6. Ryan DH, Nuccie BL, Ritterman I, Liesveld JL, et al. Expression of interleukin-7 receptor by lineage-negative human bone marrow progenitors with enhanced lymphoid proliferative potential and B-lineage differentiation capacity. Blood 1997; 89 : 929–40. [Google Scholar]
  7. Hao QL, Zhu J, Price MA, et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 2001; 97 : 3683–90. [Google Scholar]
  8. Haddad R, Guardiola P, Izac B, et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 2004; 104 : 3918–26. [Google Scholar]
  9. La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 2005; 105 : 1431–9. [Google Scholar]
  10. De Smedt M, Hoebeke I, Plum J. Human bone marrow CD34+ progenitor cells mature to T cells on OP9-DL1 stromal cell line without thymus microenvironment. Blood Cells Mol Dis 2004; 33 : 227–32. [Google Scholar]
  11. Ara T, Itoi M, Kawabata K, et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 2003; 170 : 4649–55. [Google Scholar]
  12. Liu C, Ueno T, Kuse S, et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 2005; 105 : 31–9. [Google Scholar]
  13. Rossi FM, Corbel SY, Merzaban JS, et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat Immunol 2005; 6 : 626–34. [Google Scholar]
  14. Scimone ML, Aifantis I, Apostolou I, et al. A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus. Proc Natl Acad Sci USA 2006; 103 : 7006–11. [Google Scholar]
  15. Haddad R, Guimiot F, Six E, et al. Dynamics of thymus-colonizing cells during human development. Immunity 2006; 24 : 217–30. [Google Scholar]
  16. Ishii T, Nishihara M, Ma F, et al. Expression of stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4, on CD34+ human bone marrow cells is a phenotypic alteration for committed lymphoid progenitors. J Immunol 1999; 163 : 3612–20. [Google Scholar]
  17. Hernandez-Lopez C, Varas A, Sacedon R, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood 2002; 99 : 546–54. [Google Scholar]
  18. Weerkamp F, Baert MR, Brugman MH, et al. Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 2006; 107 : 3131–7. [Google Scholar]
  19. Reiffers J, Cailliot C, Dazey B, et al. Abrogation of post-myeloablative chemotherapy neutropenia by ex-vivo expanded autologous CD34-positive cells. Lancet 1999; 354 : 1092–3. [Google Scholar]
  20. Hori T, Spits H. Clonal analysis of human CD4-CD8-CD3- thymocytes highly purified from postnatal thymus. J Immunol 1991; 146 : 2116–21. [Google Scholar]
  21. Dick WA, Pike-Overzet K, Weerkampf F, et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005; 201 : 1715–23. [Google Scholar]
  22. Joachims ML, Chain JL, Hooker SW, et al. Human alpha beta and gamma delta thymocyte development : TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential. Differences between men and mice. J Immunol 2006; 176 : 1543–52. [Google Scholar]
  23. Rothenberg EV, Taghon T. Molecular genetics of T cell development. Annu Rev Immunol 2005; 23 : 601–49. [Google Scholar]
  24. Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood 1992; 80 : 575–81. [Google Scholar]
  25. Taghon T, De Smedt M, Stolz F, et al. Enforced expression of GATA-3 severely reduces human thymic cellularity. J Immunol 2001; 167 : 4468–75. [Google Scholar]
  26. Schlissel MS, Durum SD, Muegge K. The interleukin 7 receptor is required for T cell receptor gamma locus accessibility to the V(D)J recombinase. J Exp Med 2000; 191 : 1045–50. [Google Scholar]
  27. Muegge K, Vila MP, Durum SK. Interleukin-7 : a cofactor for V(D)J rearrangement of the T cell receptor beta gene. Science 1993; 261 : 93–5. [Google Scholar]
  28. Gulino AV, Moratto D, Sozzani S, et al. Altered leukocyte response to CXCL12 in patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 2004; 104 : 444–52. [Google Scholar]
  29. Asnafi V, Buzyn A, Thomas X, et al. Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study. Blood 2005; 105 : 3072–8. [Google Scholar]
  30. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of Notch1 in human T cell acute lymphoblastic leukemia. Science 2004; 306 : 269–71. [Google Scholar]
  31. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66 : 649–61. [Google Scholar]
  32. Lecuyer E, Hoang T. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp Hematol 2004; 32 : 11–24. [Google Scholar]
  33. McCormack MP, Rabbitts TH. Activation of the T-cell oncogene LMO2 after gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2004; 350 : 913–22. [Google Scholar]
  34. Palomero T, Barnes KC, Real PJ, et al. CUTLL1, a novel human T-cell lymphoma cell line with t(7 ; 9) rearrangement, aberrant Notch1 activation and high sensitivity to gamma-secretase inhibitors. Leukemia 2006; 20 : 1279–87. [Google Scholar]
  35. Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6 : 347–59. [Google Scholar]
  36. Zediak VP, Maillard I, Bhandoola A. Closer to the source: Notch and the nature of thymus-settling cells. Immunity 2005; 23 : 245–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.