Free Access
Med Sci (Paris)
Volume 22, Number 11, Novembre 2006
Page(s) 969 - 972
Section M/S revues
Published online 15 November 2006
  1. Wensing AM, Boucher CA. Worldwide transmission of drug-resistant HIV. AIDS Rev 2003; 5 : 140–55. [Google Scholar]
  2. Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1: 2005. Top HIV Med 2005; 13 : 51–7. [Google Scholar]
  3. Stahl G, Rousset JP. Les surprises du décodage de l’information génétique. Med Sci (Paris) 1999; 15 : 1118–25. [Google Scholar]
  4. Brierley I, Pennell S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 2001; 66 : 233–48. [Google Scholar]
  5. Telenti A, Martinez R, Munoz M, et al. Analysis of natural variants of the human immunodeficiency virus type 1 gag-pol frameshift stem-loop structure. J Virol 2002; 76 : 7868–73. [Google Scholar]
  6. Dulude D, Berchiche YA, Gendron K, et al. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2006; 345 : 127–36. [Google Scholar]
  7. Pallan PS, Marshall WS, Harp J, et al. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif. Biochemistry 2005; 44 : 11315–22. [Google Scholar]
  8. Cornish PV, Hennig M, Giedroc DP. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc Natl Acad Sci USA 2005; 102 : 12694–9. [Google Scholar]
  9. Chen X, Kang H, Shen LX, et al. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA. J Mol Biol 1996; 260 : 479–83. [Google Scholar]
  10. Michiels PJ, Versleijen AA, Verlaan PW, et al. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J Mol Biol 2001; 310 : 1109–23. [Google Scholar]
  11. Su L, Chen L, Egli M, et al. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol 1999; 6 : 285–92. [Google Scholar]
  12. Takyar S, Hickerson RP, Noller HF. mRNA helicase activity of the ribosome. Cell 2005; 120 : 49–58. [Google Scholar]
  13. Plant EP, Dinman JD. Torsional restraint: a new twist on frameshifting pseudoknots. Nucleic Acids Res 2005; 33 : 1825–33. [Google Scholar]
  14. Jacks T, Power MD, Masiarz FR, et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988; 331 : 280–3. [Google Scholar]
  15. Kang H. Direct structural evidence for formation of a stem-loop structure involved in ribosomal frameshifting in human immunodeficiency virus type 1. Biochim Biophys Acta 1998; 1397 : 73–8. [Google Scholar]
  16. Dinman JD, Richter S, Plant EP, et al. The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure. Proc Natl Acad Sci USA 2002; 99 : 5331–6. [Google Scholar]
  17. Dulude D, Baril M, Brakier-Gingras L. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Res 2002; 30 : 5094–102. [Google Scholar]
  18. Gaudin C, Mazauric MH, Traikia M, et al. Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 2005; 349 : 1024–35. [Google Scholar]
  19. Staple DW, Butcher SE. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 2005; 349 : 1011–23. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.