Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 11, Novembre 2006
Page(s) 969 - 972
Section M/S revues
DOI https://doi.org/10.1051/medsci/20062211969
Publié en ligne 15 novembre 2006
  1. Wensing AM, Boucher CA. Worldwide transmission of drug-resistant HIV. AIDS Rev 2003; 5 : 140–55. [Google Scholar]
  2. Johnson VA, Brun-Vezinet F, Clotet B, et al. Update of the drug resistance mutations in HIV-1: 2005. Top HIV Med 2005; 13 : 51–7. [Google Scholar]
  3. Stahl G, Rousset JP. Les surprises du décodage de l’information génétique. Med Sci (Paris) 1999; 15 : 1118–25. [Google Scholar]
  4. Brierley I, Pennell S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 2001; 66 : 233–48. [Google Scholar]
  5. Telenti A, Martinez R, Munoz M, et al. Analysis of natural variants of the human immunodeficiency virus type 1 gag-pol frameshift stem-loop structure. J Virol 2002; 76 : 7868–73. [Google Scholar]
  6. Dulude D, Berchiche YA, Gendron K, et al. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 2006; 345 : 127–36. [Google Scholar]
  7. Pallan PS, Marshall WS, Harp J, et al. Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif. Biochemistry 2005; 44 : 11315–22. [Google Scholar]
  8. Cornish PV, Hennig M, Giedroc DP. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc Natl Acad Sci USA 2005; 102 : 12694–9. [Google Scholar]
  9. Chen X, Kang H, Shen LX, et al. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA. J Mol Biol 1996; 260 : 479–83. [Google Scholar]
  10. Michiels PJ, Versleijen AA, Verlaan PW, et al. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J Mol Biol 2001; 310 : 1109–23. [Google Scholar]
  11. Su L, Chen L, Egli M, et al. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol 1999; 6 : 285–92. [Google Scholar]
  12. Takyar S, Hickerson RP, Noller HF. mRNA helicase activity of the ribosome. Cell 2005; 120 : 49–58. [Google Scholar]
  13. Plant EP, Dinman JD. Torsional restraint: a new twist on frameshifting pseudoknots. Nucleic Acids Res 2005; 33 : 1825–33. [Google Scholar]
  14. Jacks T, Power MD, Masiarz FR, et al. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988; 331 : 280–3. [Google Scholar]
  15. Kang H. Direct structural evidence for formation of a stem-loop structure involved in ribosomal frameshifting in human immunodeficiency virus type 1. Biochim Biophys Acta 1998; 1397 : 73–8. [Google Scholar]
  16. Dinman JD, Richter S, Plant EP, et al. The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure. Proc Natl Acad Sci USA 2002; 99 : 5331–6. [Google Scholar]
  17. Dulude D, Baril M, Brakier-Gingras L. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Res 2002; 30 : 5094–102. [Google Scholar]
  18. Gaudin C, Mazauric MH, Traikia M, et al. Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 2005; 349 : 1024–35. [Google Scholar]
  19. Staple DW, Butcher SE. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 2005; 349 : 1011–23. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.