Free Access
Med Sci (Paris)
Volume 22, Number 6-7, Juin-Juillet 2006
Page(s) 659 - 663
Section Forum
Published online 15 June 2006
  1. Tattersall I. Becoming human: evolution and human uniqueness. New York : Harcourt, Brace and Company, 1998. [Google Scholar]
  2. Aeillo LC, Dean C. Introduction to human evolutionary anatomy. New York : Academic, 1990. [Google Scholar]
  3. Conroy GC. Reconstructing human origins: a modern synthesis. New York : WW Norton, 1997. [Google Scholar]
  4. Falk D. Hominid brain evolution. Looks can be deceiving. Science 1998; 280 : 1714. [Google Scholar]
  5. Jerison H. Evolution of the human brain and intelligence. London : Academic Press, 1973. [Google Scholar]
  6. Johanson D, Edey M. Lucy: the beginnings of mankind. New York : Touchstone Books, 1981. [Google Scholar]
  7. Leakey R. The origin of humankind. New York : Basic Books, 1994. [Google Scholar]
  8. Changeux JP, Chavaillon J. Origins of the human brain. Oxford : Clarendon Press, 1995. [Google Scholar]
  9. Coppens Y, Glaize P. Homo sapiens. Paris : Flammarion, 2004. [Google Scholar]
  10. Holliday M. Metabolic rate and organ size during growth from infancy to maturity and during late gestation and early infancy. Pediatrics 1971; 47 : 169–72. [Google Scholar]
  11. Armstrong E. Relative brain size and metabolism in mammals. Science 1983; 230 : 1302–4. [Google Scholar]
  12. Martin RD. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 1981; 293 : 57–60. [Google Scholar]
  13. Widdowson EM. Changes in body proportion and composition with growth. In : Davies JA, Dobbing J, eds. Scientific foundations of pediatrics. London : Heinemann, 1974 : 153–63. [Google Scholar]
  14. Harrington TA, Thomas EL, Modi N, et al. Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids 2002; 37 : 95–100. [Google Scholar]
  15. Battaglia FC, Thureen PJ. Nutrition of the fetus and premature infant. Nutrition 1991; 13 : 903–6. [Google Scholar]
  16. Cunnane SC, Crawford MA. Survival of the fattest. Fat babies were the key to evolution of the large human brain. Comp Biochem Physiol 2003; 136A : 17–26. [Google Scholar]
  17. Crawford MA, Costeloe K, Ghebremeskel K, et al. Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies ? Am J Clin Nutr 1997; 66(suppl) : S1032–41. [Google Scholar]
  18. Hack M, Breslau N, Weissman B, et al. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med 1991; 325 : 231–7. [Google Scholar]
  19. Adam PAJ, Raiha N, Rahiala EL, Kekomaki EL. Oxidation of glucose and D-Beta-hydroxybuyrate by the early human fetal brain. Acta Paediatr Scand 1975; 64 : 17–24. [Google Scholar]
  20. Pardridge WM. Blood-brain barrier transport of glucose, free fatty acids, and ketone bodies. In : Vranic M, Efendic S, Hollenberg C, eds. Fuel homeostasis and the nervous system. New York : Plenum Press, 1991 : 43–53. [Google Scholar]
  21. Sokoloff L. Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. In : Vranic M, Efendic S, Hollenberg C, eds. Fuel homeostasis and the nervous system. New York : Plenum Press, 1991 : 21–42. [Google Scholar]
  22. Kety SS. The general metabolism of the brain in vivo. In : Richter D, ed. Metabolism of the nervous system. London ; Pergamon, 1957 : 221–36. [Google Scholar]
  23. Edmond J. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J Biol Chem 1974; 249 : 72–80. [Google Scholar]
  24. Patel MS, Owen OE. Development and regulation of lipid synthesis from ketone bodies by rat brain. J Neurochem 1977; 28 : 109–14. [Google Scholar]
  25. Cunnane SC, Francescutti V, Brenna JT, Crawford MA. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 2000; 35 : 105–11. [Google Scholar]
  26. Broadhurst CL, Wang Y, Crawford MA, et al. Brain-specific lipids from marine, lacustrine or terrestrial food resources ; potential impact on early African Homo sapiens( part B). Comp Biochem Physiol, 2002; 131 : 653–73. [Google Scholar]
  27. Stewart KM. Early hominid utilisation of fish resources and implications for seasonality and behaviour. J Human Evol 1994; 27 : 229–45. [Google Scholar]
  28. Stewart K. A report on the fish remains from Beds I and II sites, Olduvai Gorge, Tanzania. Darmst Beitrag Naturgesch 1996; 6 : 263–9. [Google Scholar]
  29. Walter RC, Buffler RT, Bruggemann JH, et al. Early human occupation of the red sea coast of Eritrea during the last interglacial. Nature 2000; 405 : 65–9. [Google Scholar]
  30. Ellis DV. Wetlands or aquatic ape ? Availability of food resources. Nutr Health 1993; 9: 205–17. [Google Scholar]
  31. Kappelman J. The evolution of body mass and relative brain size in fossil hominids. J Human Evol 1997; 30 : 243–76. [Google Scholar]
  32. Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW. Metabolic correlates of human evolution. Comp Biochem Physiol 2003; 136A : 5–16. [Google Scholar]
  33. Ruff CB, Trinkaus E, Holiday TW. Body mass and encephalization in Pleistocene. Homo Nature 1997; 387 : 173–6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.