Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 6-7, Juin-Juillet 2006
Page(s) 659 - 663
Section Forum
DOI https://doi.org/10.1051/medsci/20062267659
Publié en ligne 15 juin 2006
  1. Tattersall I. Becoming human: evolution and human uniqueness. New York : Harcourt, Brace and Company, 1998. [Google Scholar]
  2. Aeillo LC, Dean C. Introduction to human evolutionary anatomy. New York : Academic, 1990. [Google Scholar]
  3. Conroy GC. Reconstructing human origins: a modern synthesis. New York : WW Norton, 1997. [Google Scholar]
  4. Falk D. Hominid brain evolution. Looks can be deceiving. Science 1998; 280 : 1714. [Google Scholar]
  5. Jerison H. Evolution of the human brain and intelligence. London : Academic Press, 1973. [Google Scholar]
  6. Johanson D, Edey M. Lucy: the beginnings of mankind. New York : Touchstone Books, 1981. [Google Scholar]
  7. Leakey R. The origin of humankind. New York : Basic Books, 1994. [Google Scholar]
  8. Changeux JP, Chavaillon J. Origins of the human brain. Oxford : Clarendon Press, 1995. [Google Scholar]
  9. Coppens Y, Glaize P. Homo sapiens. Paris : Flammarion, 2004. [Google Scholar]
  10. Holliday M. Metabolic rate and organ size during growth from infancy to maturity and during late gestation and early infancy. Pediatrics 1971; 47 : 169–72. [Google Scholar]
  11. Armstrong E. Relative brain size and metabolism in mammals. Science 1983; 230 : 1302–4. [Google Scholar]
  12. Martin RD. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 1981; 293 : 57–60. [Google Scholar]
  13. Widdowson EM. Changes in body proportion and composition with growth. In : Davies JA, Dobbing J, eds. Scientific foundations of pediatrics. London : Heinemann, 1974 : 153–63. [Google Scholar]
  14. Harrington TA, Thomas EL, Modi N, et al. Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids 2002; 37 : 95–100. [Google Scholar]
  15. Battaglia FC, Thureen PJ. Nutrition of the fetus and premature infant. Nutrition 1991; 13 : 903–6. [Google Scholar]
  16. Cunnane SC, Crawford MA. Survival of the fattest. Fat babies were the key to evolution of the large human brain. Comp Biochem Physiol 2003; 136A : 17–26. [Google Scholar]
  17. Crawford MA, Costeloe K, Ghebremeskel K, et al. Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies ? Am J Clin Nutr 1997; 66(suppl) : S1032–41. [Google Scholar]
  18. Hack M, Breslau N, Weissman B, et al. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med 1991; 325 : 231–7. [Google Scholar]
  19. Adam PAJ, Raiha N, Rahiala EL, Kekomaki EL. Oxidation of glucose and D-Beta-hydroxybuyrate by the early human fetal brain. Acta Paediatr Scand 1975; 64 : 17–24. [Google Scholar]
  20. Pardridge WM. Blood-brain barrier transport of glucose, free fatty acids, and ketone bodies. In : Vranic M, Efendic S, Hollenberg C, eds. Fuel homeostasis and the nervous system. New York : Plenum Press, 1991 : 43–53. [Google Scholar]
  21. Sokoloff L. Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. In : Vranic M, Efendic S, Hollenberg C, eds. Fuel homeostasis and the nervous system. New York : Plenum Press, 1991 : 21–42. [Google Scholar]
  22. Kety SS. The general metabolism of the brain in vivo. In : Richter D, ed. Metabolism of the nervous system. London ; Pergamon, 1957 : 221–36. [Google Scholar]
  23. Edmond J. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J Biol Chem 1974; 249 : 72–80. [Google Scholar]
  24. Patel MS, Owen OE. Development and regulation of lipid synthesis from ketone bodies by rat brain. J Neurochem 1977; 28 : 109–14. [Google Scholar]
  25. Cunnane SC, Francescutti V, Brenna JT, Crawford MA. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 2000; 35 : 105–11. [Google Scholar]
  26. Broadhurst CL, Wang Y, Crawford MA, et al. Brain-specific lipids from marine, lacustrine or terrestrial food resources ; potential impact on early African Homo sapiens( part B). Comp Biochem Physiol, 2002; 131 : 653–73. [Google Scholar]
  27. Stewart KM. Early hominid utilisation of fish resources and implications for seasonality and behaviour. J Human Evol 1994; 27 : 229–45. [Google Scholar]
  28. Stewart K. A report on the fish remains from Beds I and II sites, Olduvai Gorge, Tanzania. Darmst Beitrag Naturgesch 1996; 6 : 263–9. [Google Scholar]
  29. Walter RC, Buffler RT, Bruggemann JH, et al. Early human occupation of the red sea coast of Eritrea during the last interglacial. Nature 2000; 405 : 65–9. [Google Scholar]
  30. Ellis DV. Wetlands or aquatic ape ? Availability of food resources. Nutr Health 1993; 9: 205–17. [Google Scholar]
  31. Kappelman J. The evolution of body mass and relative brain size in fossil hominids. J Human Evol 1997; 30 : 243–76. [Google Scholar]
  32. Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW. Metabolic correlates of human evolution. Comp Biochem Physiol 2003; 136A : 5–16. [Google Scholar]
  33. Ruff CB, Trinkaus E, Holiday TW. Body mass and encephalization in Pleistocene. Homo Nature 1997; 387 : 173–6. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.