Free Access
Med Sci (Paris)
Volume 22, Number 6-7, Juin-Juillet 2006
Page(s) 651 - 658
Section Dossier technique
Published online 15 June 2006
  1. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 2003; 103 : 577–644. [Google Scholar]
  2. Niemz M. Laser-tissue interactions. Fundamentals and applications, 2nd ed. Berlin : Springer Biological and Medical Physics Series, 2002. [Google Scholar]
  3. Brunetaud JM, Mordon S, Desmettre T, Beacco C. In : Fabre C, Pocholle JP, eds. Les lasers et leurs applications scientifiques et médicales. Les Ulis : EDP Sciences, 1996–2002. [Google Scholar]
  4. Colombelli J, Reynaud EG, Rietdorf J, et al. In vivo selective cytoskeleton dynamics quantification in interphase cells by pulsed UV laser nanosurgery. Traffic 2005; 6 : 1093–102. [Google Scholar]
  5. Botvinick EL, Venugopalan V, Shah JV, et al. Controlled ablation of microtubules using a picosecond laser. Biophys J 2004; 87 : 4203–12. [Google Scholar]
  6. Watanabe W, Arakawa N, Matsunaga S, et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt Exp 2004; 12 : 4203–13. [Google Scholar]
  7. Srinivasan R. Ablation of polymers and biological tissue by ultraviolet lasers. Science 1986; 234 : 559. [Google Scholar]
  8. Colombelli J, Grill SW, Stelzer EHK. Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev Sci Instr 2004; 75 : 472–8. [Google Scholar]
  9. Joglekar AP, Liu HH, Meyhöfer E, et al. Optics at critical intensity : applications to nanomorphing. Proc Natl Acad Sci USA 2004; 101 : 5856–61. [Google Scholar]
  10. Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 2005; 81 : 1015–47. [Google Scholar]
  11. Tolic-Nørrelykke IM, Sacconi L, Thon G, Pavone FS. Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol 2004; 14 : 1181–6. [Google Scholar]
  12. Heisterkamp A, Maxwell IZ, Mazur E, et al. Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Exp 2005; 13 : 1390–6. [Google Scholar]
  13. Koenig K, Riemann I, Fritzsche W. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 2001; 26 : 819–21. [Google Scholar]
  14. Montell DJ, Keshishian H, Spradling AC. Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science 1991; 254 : 290–3. [Google Scholar]
  15. Berger F. Cell ablation studies in plant development. Cell Mol Biol (Noisy-le-Grand) 1998; 44 : 711–9. [Google Scholar]
  16. Supatto W, Debarre D, Moulia B, et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 2005; 102 : 1047–52. [Google Scholar]
  17. Hutson MS, Tokutake Y, Chang MS, et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modelling. Science 2003; 300 : 145–9. [Google Scholar]
  18. Kiehard DP, Galbraith CG, Edwards KA, et al. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 2000; 149 : 471–90. [Google Scholar]
  19. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies : growth and diabetic phenotypes. Science 2002; 296 : 1118–20. [Google Scholar]
  20. Schöpper B, Ludwig M, Edenfeld J, et al. Possible applications of lasers in assisted reproductive technologies. Hum Reprod. 1999; 14 (suppl 1) : 186–93. [Google Scholar]
  21. Blanchet GB, Russell JB, Fincher CR Jr, Portmann M. Laser micromanipulation in the mouse embryo : a novel approach to zona drilling. Fertil Steril 1992; 57 : 1337–41. [Google Scholar]
  22. Khodjakov A, Cole RW, Oakley BR, Rieder CL. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000; 10 : 59–67. [Google Scholar]
  23. Gross GW, Lucas JH, Higgins ML. Laser microbeam surgery : ultrastructural changes associated with neurite transection in culture. J Neurosci 1983; 3 : 1979–93. [Google Scholar]
  24. Yanik MF, Cinar H, Cinar HN, et al. Neurosurgery : functional regeneration after laser axotomy. Nature 2004; 432 : 822. [Google Scholar]
  25. Henriksen GH, Taylor AR, Brownlee C, Assmann SM. Laser microsurgery of higher plant cell walls permits patch-clamp access. Plant Physiol 1996; 110 : 1063–8. [Google Scholar]
  26. Buer CS, Gahagan KT, Swartzlander GA Jr, Weathers PJ. Insertion of microscopic objects through plant cell walls using laser microsurgery Biotechnol Bioeng 1998; 60 : 348–55. [Google Scholar]
  27. Hahne G, Hoffmann F. The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 1984; 33 : 175–9. [Google Scholar]
  28. Grill SW, Gonczy P, Stelzer EHK, Hyman AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001; 409 : 630–3. [Google Scholar]
  29. Khodjakov A, La Terra S, Chang F. Laser microsurgery in fission yeast : role of the mitotic spindle midzone in anaphase B. Curr Biol 2004; 14 : 1330–40. [Google Scholar]
  30. Mitchison TJ, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312 : 237–42. [Google Scholar]
  31. Tao W, Walter RJ, Berns MW. Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable. J Cell Biol 1988; 107 : 1025–35. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.