Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 6-7, Juin-Juillet 2006
Page(s) 651 - 658
Section Dossier technique
DOI https://doi.org/10.1051/medsci/20062267651
Publié en ligne 15 juin 2006
  1. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 2003; 103 : 577–644. [Google Scholar]
  2. Niemz M. Laser-tissue interactions. Fundamentals and applications, 2nd ed. Berlin : Springer Biological and Medical Physics Series, 2002. [Google Scholar]
  3. Brunetaud JM, Mordon S, Desmettre T, Beacco C. In : Fabre C, Pocholle JP, eds. Les lasers et leurs applications scientifiques et médicales. Les Ulis : EDP Sciences, 1996–2002. [Google Scholar]
  4. Colombelli J, Reynaud EG, Rietdorf J, et al. In vivo selective cytoskeleton dynamics quantification in interphase cells by pulsed UV laser nanosurgery. Traffic 2005; 6 : 1093–102. [Google Scholar]
  5. Botvinick EL, Venugopalan V, Shah JV, et al. Controlled ablation of microtubules using a picosecond laser. Biophys J 2004; 87 : 4203–12. [Google Scholar]
  6. Watanabe W, Arakawa N, Matsunaga S, et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt Exp 2004; 12 : 4203–13. [Google Scholar]
  7. Srinivasan R. Ablation of polymers and biological tissue by ultraviolet lasers. Science 1986; 234 : 559. [Google Scholar]
  8. Colombelli J, Grill SW, Stelzer EHK. Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev Sci Instr 2004; 75 : 472–8. [Google Scholar]
  9. Joglekar AP, Liu HH, Meyhöfer E, et al. Optics at critical intensity : applications to nanomorphing. Proc Natl Acad Sci USA 2004; 101 : 5856–61. [Google Scholar]
  10. Vogel A, Noack J, Hüttman G, Paltauf G. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B 2005; 81 : 1015–47. [Google Scholar]
  11. Tolic-Nørrelykke IM, Sacconi L, Thon G, Pavone FS. Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol 2004; 14 : 1181–6. [Google Scholar]
  12. Heisterkamp A, Maxwell IZ, Mazur E, et al. Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt Exp 2005; 13 : 1390–6. [Google Scholar]
  13. Koenig K, Riemann I, Fritzsche W. Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Opt Lett 2001; 26 : 819–21. [Google Scholar]
  14. Montell DJ, Keshishian H, Spradling AC. Laser ablation studies of the role of the Drosophila oocyte nucleus in pattern formation. Science 1991; 254 : 290–3. [Google Scholar]
  15. Berger F. Cell ablation studies in plant development. Cell Mol Biol (Noisy-le-Grand) 1998; 44 : 711–9. [Google Scholar]
  16. Supatto W, Debarre D, Moulia B, et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Natl Acad Sci USA 2005; 102 : 1047–52. [Google Scholar]
  17. Hutson MS, Tokutake Y, Chang MS, et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modelling. Science 2003; 300 : 145–9. [Google Scholar]
  18. Kiehard DP, Galbraith CG, Edwards KA, et al. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 2000; 149 : 471–90. [Google Scholar]
  19. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies : growth and diabetic phenotypes. Science 2002; 296 : 1118–20. [Google Scholar]
  20. Schöpper B, Ludwig M, Edenfeld J, et al. Possible applications of lasers in assisted reproductive technologies. Hum Reprod. 1999; 14 (suppl 1) : 186–93. [Google Scholar]
  21. Blanchet GB, Russell JB, Fincher CR Jr, Portmann M. Laser micromanipulation in the mouse embryo : a novel approach to zona drilling. Fertil Steril 1992; 57 : 1337–41. [Google Scholar]
  22. Khodjakov A, Cole RW, Oakley BR, Rieder CL. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000; 10 : 59–67. [Google Scholar]
  23. Gross GW, Lucas JH, Higgins ML. Laser microbeam surgery : ultrastructural changes associated with neurite transection in culture. J Neurosci 1983; 3 : 1979–93. [Google Scholar]
  24. Yanik MF, Cinar H, Cinar HN, et al. Neurosurgery : functional regeneration after laser axotomy. Nature 2004; 432 : 822. [Google Scholar]
  25. Henriksen GH, Taylor AR, Brownlee C, Assmann SM. Laser microsurgery of higher plant cell walls permits patch-clamp access. Plant Physiol 1996; 110 : 1063–8. [Google Scholar]
  26. Buer CS, Gahagan KT, Swartzlander GA Jr, Weathers PJ. Insertion of microscopic objects through plant cell walls using laser microsurgery Biotechnol Bioeng 1998; 60 : 348–55. [Google Scholar]
  27. Hahne G, Hoffmann F. The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur J Cell Biol 1984; 33 : 175–9. [Google Scholar]
  28. Grill SW, Gonczy P, Stelzer EHK, Hyman AA. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 2001; 409 : 630–3. [Google Scholar]
  29. Khodjakov A, La Terra S, Chang F. Laser microsurgery in fission yeast : role of the mitotic spindle midzone in anaphase B. Curr Biol 2004; 14 : 1330–40. [Google Scholar]
  30. Mitchison TJ, Kirschner M. Dynamic instability of microtubule growth. Nature 1984; 312 : 237–42. [Google Scholar]
  31. Tao W, Walter RJ, Berns MW. Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable. J Cell Biol 1988; 107 : 1025–35. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.