Free Access
Med Sci (Paris)
Volume 22, Number 6-7, Juin-Juillet 2006
Page(s) 633 - 638
Section M/S revues
Published online 15 June 2006
  1. Horisberger JD. Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 2004; 19 : 377–87. [Google Scholar]
  2. Geering K. The functional role of β subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 2001; 33 : 425–38. [Google Scholar]
  3. Crambert G, Hasler U, Beggah AT, et al. Transport and pharmacological properties of nine different human Na,K-ATPase isozymes. J Biol Chem 2000; 275 : 1976–86. [Google Scholar]
  4. Feraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney : hormonal control. Physiol Rev 2001; 81 : 345–418. [Google Scholar]
  5. Sweadner KJ, Rael E. The FXYD gene family of small ion transport regulators or channels : cDNA sequence, protein signature sequence, and expression. Genomics 2000; 68 : 41–56. [Google Scholar]
  6. Palmer CJ, Scott BT, Jones LR. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 1991; 266 : 11126–30. [Google Scholar]
  7. Mercer RW, Biemesderfer D, Bliss DP, et al. Molecular cloning and immunological characterization of the γ-polypeptide, a small protein associated with the Na,K-ATPase. J Cell Biol 1993; 121 : 579–86. [Google Scholar]
  8. Morrison BW, Moorman JR, Kowdley GC, et al. Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induces a chloride conductance in Xenopus oocytes. J Biol Chem 1995; 270 : 2176–82. [Google Scholar]
  9. Attali B, Latter H, Rachamim N, Garty H, A corticosteroid-induced gene expressing an “IsK-like” K+ channel activity in Xenopus oocytes. Proc Natl Acad Sci USA 1995; 92 : 6092–6. [Google Scholar]
  10. Fu X, Kamps M. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts. Mol Cell Biol 1997; 17 : 1503–12. [Google Scholar]
  11. Yamaguchi F, Yamaguchi K, Tai Y, et al. Molecular cloning and characterization of a novel phospholemman-like protein from rat hippocampus. Brain Res Mol Brain Res 2001; 86 : 189–92. [Google Scholar]
  12. Béguin P, Crambert G, Monnet-Tschudi F, et al. FXYD7 is a brain-specific regulator of Na,K-ATPase α1-βisozymes. EMBO J 2002; 21 : 3264–73. [Google Scholar]
  13. Béguin P, Wang XY, Firsov D, et al. The γ subunit is a specific component of the Na,K-ATPase and modulates its transport properties. EMBO J 1997; 16 : 4250–60. [Google Scholar]
  14. Béguin P, Crambert G, Guennoun S, et al. CHIF, a member of the FXYD protein family, is a regulator of Na,K-ATPase distinct from the γ-subunit. EMBO J 2001; 20 : 3993–4002. [Google Scholar]
  15. Moorman JR, Palmer CJ, John III JE, et al. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem 1992; 267 : 14551–4. [Google Scholar]
  16. Crambert G, Geering K. FXYD proteins : New tissue-specific regulators of the ubiquitous Na,K- ATPase. Sci STKE 2003; 166 : RE1. [Google Scholar]
  17. Cornelius F, Mahmmoud YA. Functional modulation of the sodium pump : The regulatory proteins “Fixit”. News Physiol Sci 2003; 18 : 119–24. [Google Scholar]
  18. Garty H, Karlish SJ. Role of FXYD proteins in ion transport. Annu Rev Physiol 2005; 25 : 25. [Google Scholar]
  19. Therien AG, Pu HX, Karlish SJ, Blostein R. Molecular and functional studies of the gamma subunit of the sodium pump. J Bioenerg Biomembr 2001; 33 : 407–14. [Google Scholar]
  20. Moorman JR, Ackerman SJ, Kowdley GC, et al. Unitary anion currents trough phospholemman channel molecules. Nature 1995; 377 : 737–40. [Google Scholar]
  21. Crambert G, Fuzesi M, Garty H, et al. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA 2002; 99 : 11476–81. [Google Scholar]
  22. Jia LG, Donnet C, Bogaev RC, et al. Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice. Am J Physiol Heart Circ Physiol 2005; 288 : H1982–8. [Google Scholar]
  23. Mirza MA, Zhang X-Q, Ahlers BA, et al. Effects of phospholemman downregulation on contractility and [Ca2+]i transients in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2004; 286 : H1322–30. [Google Scholar]
  24. Kuster B, Shainskaya A, Pu HX, et al. A new variant of the g subunit of renal Na,K-ATPase. Identification by mass spectrometry, antibody binding, and expression in cultured cells. J Biol Chem 2000; 275 : 18441–6. [Google Scholar]
  25. Pu HX, Cluzeaud F, Goldshlegger R, et al. Functional role and immunocytochemical localization of the γa and γb forms of the Na,K-ATPase γ subunit. J Biol Chem 2001; 276 : 20370–8. [Google Scholar]
  26. Therien AG, Goldshleger R, Karlish SJ, Blostein R. Tissue-specific distribution and modulatory role of the γ subunit of the Na,K-ATPase. J Biol Chem 1997; 272 : 32628–34. [Google Scholar]
  27. Arystarkhova E, Wetzel RK, Asinovski NK, Sweadner KJ. The gamma subunit modulates Na+ and K+ affinity of the renal Na,K-ATPase. J Biol Chem 1999; 274 : 33183–5. [Google Scholar]
  28. Jones DH, Li TY, Arystarkhova E, et al. Na,K-ATPase from mice lacking the γ subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem 2005; 280 : 19003–11. [Google Scholar]
  29. Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase γ-subunit. Nat Genet 2000; 26 : 265–6. [Google Scholar]
  30. Crambert G, Li C, Swee LK, Geering K. FXYD7 : Mapping of functional sites involved in endoplasmic reticulum export, association with and regulation of Na,K-ATPase. J Biol Chem 2004; 279 : 30888–95. [Google Scholar]
  31. Pu HX, Scanzano R, Blostein R. Distinct regulatory effects of the Na,K-ATPase γ subunit. J Biol Chem 2002; 277 : 20270–6. [Google Scholar]
  32. Crambert G, Li C, Claeys D, Geering K. FXYD3 (Mat-8), a new regulator of Na,K-ATPase. Mol Biol Cell 2005; 16 : 2363–71. [Google Scholar]
  33. Grzmil M, Voigt S, Thelen P, et al. Up-regulated expression of the MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells. Int J Oncol 2004; 24 : 97–105. [Google Scholar]
  34. Shi H, Levy-Holzman R, Cluzeaud F, et al. Membrane topology and immunolocalization of CHIF in kidney and intestine. Am J Physiol 2001; 280 : F505–12. [Google Scholar]
  35. Garty H, Lindzen M, Scanzano R, et al. A functional interaction between CHIF and Na-K-ATPase : implication for regulation by FXYD proteins. Am J Physiol 2002; 283 : F607–15. [Google Scholar]
  36. Goldschimdt I, Grahammer F, Warth R, et al. Kidney and colon electrolyte transport in CHIF knockout mice. Cell Physiol Biochem 2004; 14 : 113–20. [Google Scholar]
  37. Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, et al. Interaction with the Na, K ATPase and tissue distribution of FXYD5 (RIC). J Biol Chem 2005; 7 : 7. [Google Scholar]
  38. Ino Y, Gotoh M, Sakamoto M, et al. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. PNAS 2002; 99 : 365–70. [Google Scholar]
  39. Saito S, Matoba R, Kato K, Matsubara K. Expression of a novel member of the ATP1G1/PLM/MAT8 family, phospholemman-like protein (PLP) gene, in the developmental process of mouse cerebellum. Gene 2001; 279 : 149–55. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.