Accès gratuit
Med Sci (Paris)
Volume 22, Numéro 6-7, Juin-Juillet 2006
Page(s) 633 - 638
Section M/S revues
Publié en ligne 15 juin 2006
  1. Horisberger JD. Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 2004; 19 : 377–87. [Google Scholar]
  2. Geering K. The functional role of β subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 2001; 33 : 425–38. [Google Scholar]
  3. Crambert G, Hasler U, Beggah AT, et al. Transport and pharmacological properties of nine different human Na,K-ATPase isozymes. J Biol Chem 2000; 275 : 1976–86. [Google Scholar]
  4. Feraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney : hormonal control. Physiol Rev 2001; 81 : 345–418. [Google Scholar]
  5. Sweadner KJ, Rael E. The FXYD gene family of small ion transport regulators or channels : cDNA sequence, protein signature sequence, and expression. Genomics 2000; 68 : 41–56. [Google Scholar]
  6. Palmer CJ, Scott BT, Jones LR. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 1991; 266 : 11126–30. [Google Scholar]
  7. Mercer RW, Biemesderfer D, Bliss DP, et al. Molecular cloning and immunological characterization of the γ-polypeptide, a small protein associated with the Na,K-ATPase. J Cell Biol 1993; 121 : 579–86. [Google Scholar]
  8. Morrison BW, Moorman JR, Kowdley GC, et al. Mat-8, a novel phospholemman-like protein expressed in human breast tumors, induces a chloride conductance in Xenopus oocytes. J Biol Chem 1995; 270 : 2176–82. [Google Scholar]
  9. Attali B, Latter H, Rachamim N, Garty H, A corticosteroid-induced gene expressing an “IsK-like” K+ channel activity in Xenopus oocytes. Proc Natl Acad Sci USA 1995; 92 : 6092–6. [Google Scholar]
  10. Fu X, Kamps M. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts. Mol Cell Biol 1997; 17 : 1503–12. [Google Scholar]
  11. Yamaguchi F, Yamaguchi K, Tai Y, et al. Molecular cloning and characterization of a novel phospholemman-like protein from rat hippocampus. Brain Res Mol Brain Res 2001; 86 : 189–92. [Google Scholar]
  12. Béguin P, Crambert G, Monnet-Tschudi F, et al. FXYD7 is a brain-specific regulator of Na,K-ATPase α1-βisozymes. EMBO J 2002; 21 : 3264–73. [Google Scholar]
  13. Béguin P, Wang XY, Firsov D, et al. The γ subunit is a specific component of the Na,K-ATPase and modulates its transport properties. EMBO J 1997; 16 : 4250–60. [Google Scholar]
  14. Béguin P, Crambert G, Guennoun S, et al. CHIF, a member of the FXYD protein family, is a regulator of Na,K-ATPase distinct from the γ-subunit. EMBO J 2001; 20 : 3993–4002. [Google Scholar]
  15. Moorman JR, Palmer CJ, John III JE, et al. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem 1992; 267 : 14551–4. [Google Scholar]
  16. Crambert G, Geering K. FXYD proteins : New tissue-specific regulators of the ubiquitous Na,K- ATPase. Sci STKE 2003; 166 : RE1. [Google Scholar]
  17. Cornelius F, Mahmmoud YA. Functional modulation of the sodium pump : The regulatory proteins “Fixit”. News Physiol Sci 2003; 18 : 119–24. [Google Scholar]
  18. Garty H, Karlish SJ. Role of FXYD proteins in ion transport. Annu Rev Physiol 2005; 25 : 25. [Google Scholar]
  19. Therien AG, Pu HX, Karlish SJ, Blostein R. Molecular and functional studies of the gamma subunit of the sodium pump. J Bioenerg Biomembr 2001; 33 : 407–14. [Google Scholar]
  20. Moorman JR, Ackerman SJ, Kowdley GC, et al. Unitary anion currents trough phospholemman channel molecules. Nature 1995; 377 : 737–40. [Google Scholar]
  21. Crambert G, Fuzesi M, Garty H, et al. Phospholemman (FXYD1) associates with Na,K-ATPase and regulates its transport properties. Proc Natl Acad Sci USA 2002; 99 : 11476–81. [Google Scholar]
  22. Jia LG, Donnet C, Bogaev RC, et al. Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice. Am J Physiol Heart Circ Physiol 2005; 288 : H1982–8. [Google Scholar]
  23. Mirza MA, Zhang X-Q, Ahlers BA, et al. Effects of phospholemman downregulation on contractility and [Ca2+]i transients in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2004; 286 : H1322–30. [Google Scholar]
  24. Kuster B, Shainskaya A, Pu HX, et al. A new variant of the g subunit of renal Na,K-ATPase. Identification by mass spectrometry, antibody binding, and expression in cultured cells. J Biol Chem 2000; 275 : 18441–6. [Google Scholar]
  25. Pu HX, Cluzeaud F, Goldshlegger R, et al. Functional role and immunocytochemical localization of the γa and γb forms of the Na,K-ATPase γ subunit. J Biol Chem 2001; 276 : 20370–8. [Google Scholar]
  26. Therien AG, Goldshleger R, Karlish SJ, Blostein R. Tissue-specific distribution and modulatory role of the γ subunit of the Na,K-ATPase. J Biol Chem 1997; 272 : 32628–34. [Google Scholar]
  27. Arystarkhova E, Wetzel RK, Asinovski NK, Sweadner KJ. The gamma subunit modulates Na+ and K+ affinity of the renal Na,K-ATPase. J Biol Chem 1999; 274 : 33183–5. [Google Scholar]
  28. Jones DH, Li TY, Arystarkhova E, et al. Na,K-ATPase from mice lacking the γ subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem 2005; 280 : 19003–11. [Google Scholar]
  29. Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase γ-subunit. Nat Genet 2000; 26 : 265–6. [Google Scholar]
  30. Crambert G, Li C, Swee LK, Geering K. FXYD7 : Mapping of functional sites involved in endoplasmic reticulum export, association with and regulation of Na,K-ATPase. J Biol Chem 2004; 279 : 30888–95. [Google Scholar]
  31. Pu HX, Scanzano R, Blostein R. Distinct regulatory effects of the Na,K-ATPase γ subunit. J Biol Chem 2002; 277 : 20270–6. [Google Scholar]
  32. Crambert G, Li C, Claeys D, Geering K. FXYD3 (Mat-8), a new regulator of Na,K-ATPase. Mol Biol Cell 2005; 16 : 2363–71. [Google Scholar]
  33. Grzmil M, Voigt S, Thelen P, et al. Up-regulated expression of the MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells. Int J Oncol 2004; 24 : 97–105. [Google Scholar]
  34. Shi H, Levy-Holzman R, Cluzeaud F, et al. Membrane topology and immunolocalization of CHIF in kidney and intestine. Am J Physiol 2001; 280 : F505–12. [Google Scholar]
  35. Garty H, Lindzen M, Scanzano R, et al. A functional interaction between CHIF and Na-K-ATPase : implication for regulation by FXYD proteins. Am J Physiol 2002; 283 : F607–15. [Google Scholar]
  36. Goldschimdt I, Grahammer F, Warth R, et al. Kidney and colon electrolyte transport in CHIF knockout mice. Cell Physiol Biochem 2004; 14 : 113–20. [Google Scholar]
  37. Lubarski I, Pihakaski-Maunsbach K, Karlish SJ, et al. Interaction with the Na, K ATPase and tissue distribution of FXYD5 (RIC). J Biol Chem 2005; 7 : 7. [Google Scholar]
  38. Ino Y, Gotoh M, Sakamoto M, et al. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. PNAS 2002; 99 : 365–70. [Google Scholar]
  39. Saito S, Matoba R, Kato K, Matsubara K. Expression of a novel member of the ATP1G1/PLM/MAT8 family, phospholemman-like protein (PLP) gene, in the developmental process of mouse cerebellum. Gene 2001; 279 : 149–55. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.