Free Access
Issue |
Med Sci (Paris)
Volume 22, Number 6-7, Juin-Juillet 2006
|
|
---|---|---|
Page(s) | 626 - 632 | |
Section | M/S revues | |
DOI | https://doi.org/10.1051/medsci/20062267626 | |
Published online | 15 June 2006 |
- Bisaillon M. La structure-coiffe des ARN messagers. Med Sci (Paris) 2001; 17 : 312–9. [Google Scholar]
- Furuichi Y, Shatkin AJ. Characterization of cap structures. Meth Enzymol 1989; 180 : 164–76. [Google Scholar]
- Hirose Y, Manley JL. RNA polymerase II and the integration of nuclear events. Genes Dev 2000; 14 : 1415–29. [Google Scholar]
- Proudfoot NJ, Furger A, Dye MJ. Integrating mRNA processing with transcription. Cell 2002; 108 : 501–12. [Google Scholar]
- McKendrick L, Thompson E, Ferreira J, et al. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Mol Cell Biol 2001; 21 : 3632–41. [Google Scholar]
- Shatkin AJ. Capping of eucaryotic mRNAs. Cell 1976; 9 : 645–53. [Google Scholar]
- Varani G. A cap for all occasions. Structure 1997; 5 : 855–8. [Google Scholar]
- Baron-Benhamou J, Fortes P, Inada T, et al. The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA 2003; 9 : 654–62. [Google Scholar]
- Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003; 72 : 291–336. [Google Scholar]
- Jurica MS, Moore MJ. Capturing splicing complexes to study structure and mechanism. Methods 2002; 28 : 336–45. [Google Scholar]
- Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997; 11 : 2755–66. [Google Scholar]
- Bienroth S, Keller W, Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J 1993; 12 : 585–94. [Google Scholar]
- Proudfoot N, O’Sullivan J. Polyadenylation: a tail of two complexes. Curr Biol 2002; 12 : R855–7. [Google Scholar]
- Flaherty SM, Fortes P, Izaurralde E, et al. Participation of the nuclear cap binding complex in pre-mRNA 3’ processing. Proc Natl Acad Sci USA 1997; 94 : 11893–8. [Google Scholar]
- Gray NK, Jeffery MC, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 2000; 19 : 4723–33. [Google Scholar]
- Bauren G, Belikov S, Wieslander L. Transcriptional terminaison in the Balbiani ring 1 gene is closely coupled to 3’-end formation and excision of the 3’-termial intron. Genes Dev 1998; 12 : 2759–69. [Google Scholar]
- Cramer P, Srebrow A, Kadener S, et al. Coordination between transcription and pre-mRNA processing. FEBS Lett 2001; 498 : 179–82. [Google Scholar]
- Sims 3rd RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II : the short and long of it. Genes Dev 2004; 18 : 2437–68. [Google Scholar]
- Sims 3rd RJ, Mandal SS, Reinberg D. Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 2004; 16 : 263–71. [Google Scholar]
- Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 2002; 1577 : 308–24. [Google Scholar]
- Rodriguez CR, Cho EJ, Keogh MC, et al. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol Cell Biol 2000; 20 : 104–12. [Google Scholar]
- Wen, Y, Shatkin AJ. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev 1999; 13 : 1774–9. [Google Scholar]
- Hirose Y, Tacke R, Manley JL. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev 1999; 13 : 1234–9. [Google Scholar]
- Yuriev A, Patturajan M, Litingtung Y, et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich protein. Proc Natl Acad Sci USA 1996; 93 : 6975–80. [Google Scholar]
- Greenleaf AL. Positive patches and negative noodles : linking RNA processing to transcription. Trends Biochem 1993; 18 : 117–9. [Google Scholar]
- Patturajan M, Wei X, Berezney R, Corden JL. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol Cell Biol 1998; 18 : 2406–15. [Google Scholar]
- Ge H, Si Y, Roeder RG. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 1998; 17 : 6723–9. [Google Scholar]
- Ge H, Si Y, Wolffe AP. A novel transcriptional coactivator, p52, functionnally interacts with the essential splicing factor ASF/SF2. Mol Cell 1998; 2 : 751–9. [Google Scholar]
- Yonaha M, Proudfoot NJ. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol Cell 1999; 3 : 593–600. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.