Free Access
Med Sci (Paris)
Volume 22, Number 3, Mars 2006
Page(s) 301 - 307
Section M/S revues
Published online 15 March 2006
  1. Blagosklonny MV. P53 from complexity to simplicity : mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J 2000; 14 : 1901–7. [Google Scholar]
  2. Sherr CJ, Roberts JM. CDK inhibitors : positive and negative regulators of G1-phase progression. Genes Dev 1999; 12 : 1501–12. [Google Scholar]
  3. Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372 : 773–6. [Google Scholar]
  4. Hollstein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancers. Science 1991; 253 : 49–53. [Google Scholar]
  5. Hainaut P, Hollstein M. P53 and human cancer : the first ten thousand mutations. Adv Cancer Res 2000; 77 : 81–137. [Google Scholar]
  6. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 1994; 265 : 346–55. [Google Scholar]
  7. Munger K, Scheffner M, Huibregtse JM, Howley PM. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 1992; 12 : 197–217. [Google Scholar]
  8. Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor 53. Nature 1993; 29 : 857–60. [Google Scholar]
  9. Moll UM, Ostermeyer AG, Haladay R, et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 1996; 3 : 1126–37. [Google Scholar]
  10. Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nat Genet1993; 4 : 42–6. [Google Scholar]
  11. Lin J, Teresky AK, Levine AJ. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene1995; 12 : 2387–90. [Google Scholar]
  12. Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119 : 847–60. [Google Scholar]
  13. Friedman PN, Chen X, Bargonetti J, Prives C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci USA 1993; 90 : 3319–23. [Google Scholar]
  14. Brachmann RK, Vidal M, Boeke JD. Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 1996; 9 : 4091–5. [Google Scholar]
  15. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991; 65 : 765–7. [Google Scholar]
  16. Forrester K, Lupold SE, Ott VL, et al. Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 1995; 11 : 2103–11. [Google Scholar]
  17. Chene P. In vitro analysis of the dominant negative effect of p53 mutants. J Mol Biol 1998; 281 : 205–9. [Google Scholar]
  18. Dridi W, Fetni R, Lavoie J, et al. The dominant negative effect of p53 mutants and p21 induction in tetraploid G1 arrest depends on the type of p53 mutation and the nature of the stimulus. Cancer Genet CytoGenet 2003; 143 : 39–49. [Google Scholar]
  19. Chene P, Bechter E. P53 mutants without a functional tetramerisation domain are not oncogenic. J Mol Biol 1999; 5 : 1269–74. [Google Scholar]
  20. Pocard M, Chevillard S, Villaudy J, et al. Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Oncogene 1996; 12 : 875–82. [Google Scholar]
  21. Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004; 23 : 2330–8. [Google Scholar]
  22. Monti P, Campomenosi P, Ciribilli Y. Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene 2002; 21 : 1641–8. [Google Scholar]
  23. Notterman D, Young S, Wainger B, Levine AJ. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity. Oncogene 1998; 26 : 2743–51. [Google Scholar]
  24. Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 1996; 93 : 15335–40. [Google Scholar]
  25. Del Sal G, Ruaro EM, Utrera R, et al. Gas1-induced growth suppression requires a transactivation-independent p53 function. Mol Cell Biol 1995; 15 : 7152–60. [Google Scholar]
  26. Sorensen TS, Girling R, Lee CW, et al. Functional interaction between DP-1 and p53. Mol Cell Biol 1996; 16 : 5888–95. [Google Scholar]
  27. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11 : 577–90. [Google Scholar]
  28. Whitesell L, Sutphin P, An WG, et al. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 1997; 23 : 2809–16. [Google Scholar]
  29. Lane DP. Killing tumor cells with viruses : a question of specificity. Nat Med 1998; 9 : 1012–3. [Google Scholar]
  30. Ganly I, Kirn D, Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000; 3 : 798–806. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.