Free Access
Med Sci (Paris)
Volume 22, Number 1, Janvier 2006
Page(s) 47 - 53
Section M/S revues
Published online 15 January 2006
  1. Gutteridge JM. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 1994; 91 : 133–40. [Google Scholar]
  2. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82 : 47–95. [Google Scholar]
  3. Halliwell B, Gutteridge JMC. Free radicals in biology and medecine. Oxford : Clarendon Press, 1989 : 22–81. [Google Scholar]
  4. Thorpe GW, Fong CS, Alic N, et al. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci USA 2004; 1 : 6564–9. [Google Scholar]
  5. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999; 342 : 461–96. [Google Scholar]
  6. Mahadev K, Wu X, Zilbering A, et al. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001; 276 : 48662–9. [Google Scholar]
  7. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 1967; 213 : 137–9. [Google Scholar]
  8. Turrens J.-F. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552 : 335–44. [Google Scholar]
  9. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11 : 376–81. [Google Scholar]
  10. Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996; 13 : 43–7. [Google Scholar]
  11. Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995; 92 : 6264–8. [Google Scholar]
  12. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002; 80 : 780–7. [Google Scholar]
  13. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404 : 787–90. [Google Scholar]
  14. Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997; 272 : 11369–77. [Google Scholar]
  15. Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely lowlevels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29 : 169–202. [Google Scholar]
  16. Nègre-Salvayre A, Hirtz C, Carrera G, et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 1997; 11 : 809–15. [Google Scholar]
  17. Vidal-Puig AJ, Grujic D, Zhang CY, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 2000; 275 : 16258–66. [Google Scholar]
  18. Casteilla L, Rigoulet M, Pénicaud L, Casteilla L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUMBM Life 2001; 52 : 181–8. [Google Scholar]
  19. Nemoto S, Takeda K, Yu ZX, et al. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 2000; 20 : 7311–8. [Google Scholar]
  20. Carrière A, Fernandez Y, Rigoulet M, et al. Inhibition of white preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 2003; 550 : 163–7. [Google Scholar]
  21. Carrière A, Carmona MC, Fernandez Y, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 2004; 279 : 40462–9 [Google Scholar]
  22. Semenza GL. Perspectives on oxygen sensing. Cell 1999; 98: 281–4. [Google Scholar]
  23. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275 : 25130–8. [Google Scholar]
  24. Schroedl C, McClintock DS, Budinger GR, Chandel NS. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 2002; 283 : L922–31. [Google Scholar]
  25. Yun Z, Maecker HL, Johnson RS, Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2002; 2 : 331–41. [Google Scholar]
  26. Pfeiffer A, Schatz H. Diabetic microvascular complications and growth factors. Exp Clin Endocrinol Diabetes 1995; 103 : 7–14. [Google Scholar]
  27. Sastre J, Pallardo FV, Vina J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 2003; 35 : 1–8. [Google Scholar]
  28. Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000; 289 : 1 567–9. [Google Scholar]
  29. Lin SJ, Ford E, Haigis M, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004; 18 : 12–6. [Google Scholar]
  30. Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003; 17 : 1972–4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.