Accès gratuit
Numéro
Med Sci (Paris)
Volume 22, Numéro 1, Janvier 2006
Page(s) 47 - 53
Section M/S revues
DOI https://doi.org/10.1051/medsci/200622147
Publié en ligne 15 janvier 2006
  1. Gutteridge JM. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 1994; 91 : 133–40.
  2. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82 : 47–95.
  3. Halliwell B, Gutteridge JMC. Free radicals in biology and medecine. Oxford : Clarendon Press, 1989 : 22–81.
  4. Thorpe GW, Fong CS, Alic N, et al. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci USA 2004; 1 : 6564–9.
  5. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999; 342 : 461–96.
  6. Mahadev K, Wu X, Zilbering A, et al. Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 2001; 276 : 48662–9.
  7. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 1967; 213 : 137–9.
  8. Turrens J.-F. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552 : 335–44.
  9. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995; 11 : 376–81.
  10. Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996; 13 : 43–7.
  11. Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci USA 1995; 92 : 6264–8.
  12. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002; 80 : 780–7.
  13. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404 : 787–90.
  14. Garcia-Ruiz C, Colell A, Mari M, et al. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997; 272 : 11369–77.
  15. Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely lowlevels of oxygen and its one-electron reductants. Q Rev Biophys 1996; 29 : 169–202.
  16. Nègre-Salvayre A, Hirtz C, Carrera G, et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 1997; 11 : 809–15.
  17. Vidal-Puig AJ, Grujic D, Zhang CY, et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 2000; 275 : 16258–66.
  18. Casteilla L, Rigoulet M, Pénicaud L, Casteilla L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUMBM Life 2001; 52 : 181–8.
  19. Nemoto S, Takeda K, Yu ZX, et al. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 2000; 20 : 7311–8.
  20. Carrière A, Fernandez Y, Rigoulet M, et al. Inhibition of white preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett 2003; 550 : 163–7.
  21. Carrière A, Carmona MC, Fernandez Y, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect. J Biol Chem 2004; 279 : 40462–9
  22. Semenza GL. Perspectives on oxygen sensing. Cell 1999; 98: 281–4.
  23. Chandel NS, McClintock DS, Feliciano CE, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275 : 25130–8.
  24. Schroedl C, McClintock DS, Budinger GR, Chandel NS. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 2002; 283 : L922–31.
  25. Yun Z, Maecker HL, Johnson RS, Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2002; 2 : 331–41.
  26. Pfeiffer A, Schatz H. Diabetic microvascular complications and growth factors. Exp Clin Endocrinol Diabetes 1995; 103 : 7–14.
  27. Sastre J, Pallardo FV, Vina J. The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 2003; 35 : 1–8.
  28. Melov S, Ravenscroft J, Malik S, et al. Extension of life-span with superoxide dismutase/catalase mimetics. Science 2000; 289 : 1 567–9.
  29. Lin SJ, Ford E, Haigis M, et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 2004; 18 : 12–6.
  30. Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003; 17 : 1972–4.

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.