Free Access
Med Sci (Paris)
Volume 21, Number 11, Novembre 2005
Page(s) 969 - 980
Section M/S revues
Published online 15 November 2005
  1. Hamosh A, Scott AF, Amberger J, et al. Online Mendelian inheritance in man (OMIM). Hum Mutat 2000; 15 : 57–61. [Google Scholar]
  2. Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD) : 2003 update. Hum Mutat 2003; 21 : 577–81. [Google Scholar]
  3. Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 1998; 63 : 474–88. [Google Scholar]
  4. Brown LY, Brown SA. Alanine tracts : the expanding story of human illness and trinucleotide repeats. Trends Genet 2004; 20 : 51–8. [Google Scholar]
  5. Lalioti MD, Scott HS, Buresi C, et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 1997; 386 : 847–51. [Google Scholar]
  6. Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26 : 191–4. [Google Scholar]
  7. Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001; 293 : 816–7. [Google Scholar]
  8. Albrecht A, Mundlos S. The other trinucleotide repeat : polyalanine expansion disorders. Curr Opin Genet Dev 2005; 15 : 285–93. [Google Scholar]
  9. Warren ST. Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science 1997; 275 : 408–9. [Google Scholar]
  10. Emanuel BS, Shaikh TH. Segmental duplications : an expanding role in genomic instability and disease. Nat Rev Genet 2001; 791–800. [Google Scholar]
  11. Shaw CJ, Lupski JR. Implications of the human genome architecture for rearrangement-based disorders : the genomic basis of disease. Hum Mol Genet 2004; 13 : 57–64. [Google Scholar]
  12. Abeysinghe SS, Chuzhanova N, Krawczak M, et al. Translocation and gross deletion breakpoints in human inherited disease and cancer I : nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22 : 229–44. [Google Scholar]
  13. Chuzhanova N, Abeysinghe SS, Krawczak M, et al. Translocation and gross deletion breakpoints in human inherited disease and cancer II : potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 2003; 22 : 245–51. [Google Scholar]
  14. Kazazian HH Jr, Wrong C, Youssoufian H, et al. Haemophilia A resulting from de novo onsertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988; 332 : 164–6. [Google Scholar]
  15. Wallace MR, Andersen LB, Saulino AM, et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991; 353 : 864–6. [Google Scholar]
  16. Deininger PL, Batzer MA. Mammalian retroelements. Genome Res 2002; 12 : 1455–65. [Google Scholar]
  17. Jeffreys AJ, Tamaki K, MacLeod A, et al. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 1994; 6 : 136–45. [Google Scholar]
  18. Spence JE, Perciaccante RG, Greig GM, et al. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 1988; 42 : 217–26. [Google Scholar]
  19. Surani MA. Genetics : immaculate misconception. Nature 2002; 416 : 491–3. [Google Scholar]
  20. Fisher RA, Hodges MD, Newlands ES. Familial recurrent hydatidiform mole: a review. J Reprod Med 2004; 49 : 595–601. [Google Scholar]
  21. Goriely A, McVean GA, van Pelt AM, et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci USA 2005; 102 : 6051–6. [Google Scholar]
  22. Tufarelli C, Stanley JA, Garrick D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003; 34 : 157–65. [Google Scholar]
  23. Weaving LS, Ellaway CJ, Gecz J, Christodoulou J. Rett syndrome : clinical review and genetic update. J Med Genet 2005; 42 : 1–7. [Google Scholar]
  24. Ranum LP, Day JW. Myotonic dystrophy : RNA pathogenesis comes into focus. Am J Hum Genet 2004; 74 : 793–804. [Google Scholar]
  25. Wijmenga C, Hewitt JE, Sandkuijl LA, et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 1992; 2 : 26–30. [Google Scholar]
  26. van der Maarel SM, Frants RR. The D4Z4 repeat-mediated pathogenesis of facioscapulohumeral muscular dystrophy. Am J Hum Genet 2005; 76 : 375–86. [Google Scholar]
  27. Gabellini D, Green MR, Tupler R. Inappropriate gene activation in FSHD : a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 2002; 110 : 339–48. [Google Scholar]
  28. Winokur ST, Chen YW, Masny PS, et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 2003; 12 : 2895–907. [Google Scholar]
  29. Jiang G, Yang F, van Overveld PG, et al. Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum Mol Genet 2003; 12 : 2909–21. [Google Scholar]
  30. Masny PS, Bengtsson U, Chung SA, et al. Localization of 4q35.2 to the nuclear periphery : is FSHD a nuclear envelope disease ? Hum Mol Genet 2004; 13 : 1857–71. [Google Scholar]
  31. Houdayer C, Stoppa-Lyonnet D. Transcriptional abnormalities and genetic testing. Med Sci (Paris) 2005; 21 : 170–4. [Google Scholar]
  32. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3 : 285–98. [Google Scholar]
  33. Higgs DR, Goodbourn SE, Lamb J, et al. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 1983; 306 : 398–400. [Google Scholar]
  34. Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17 : 309–15. [Google Scholar]
  35. Conti E, Izaurralde E. Nonsense-mediated mRNA decay : molecular insights and mechanistic variations across species. Curr Opin Cell Biol 2005; 17 : 316–25. [Google Scholar]
  36. Inoue K, Khajavi M, Ohyama T, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 2004; 36 : 361–9. [Google Scholar]
  37. Vogt G, Chapgier A, Yang K, et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 2005; 37 : 692–700. [Google Scholar]
  38. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992; 1 : 445–66. [Google Scholar]
  39. Notaro R, Afolayan A, Luzzatto L. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB J 2000; 14 : 485–94. [Google Scholar]
  40. Gajko-Galicka A. Mutations in type I collagen genes resulting in osteogenesis imperfecta in humans. Acta Biochim Pol 2002; 49 : 433–41. [Google Scholar]
  41. Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996; 13 : 233–7. [Google Scholar]
  42. Owen MC, Brennan SO, Lewis JH, Carrell RW. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983; 309 : 694–8. [Google Scholar]
  43. Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 2004; 5 : 958–63. [Google Scholar]
  44. Sasaki Y, Shimotake T, Go S, Iwai N. Total thyroidectomy for hereditary medullary thyroid carcinoma 12 years after correction of Hirschsprung’s disease. Eur J Surg 2001; 167 : 467–9. [Google Scholar]
  45. Clain J, Lehmann-Che J, Dugueperoux I, et al. Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype. Hum Mutat 2005; 25 : 360–71. [Google Scholar]
  46. Monplaisir N, Merault G, Poyart C, et al. Hemoglobin S Antilles : a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. Proc Natl Acad Sci USA 1986; 83 : 9363–7. [Google Scholar]
  47. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 2004; 23 : 11–27. [Google Scholar]
  48. Dermitzakis ET, Reymond A, Antonarakis SE. Conserved non-genic sequences - an unexpected feature of mammalian genomes. Nat Rev Genet 2005; 6 : 151–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.