Accès gratuit
Numéro
Med Sci (Paris)
Volume 21, Numéro 11, Novembre 2005
Page(s) 969 - 980
Section M/S revues
DOI https://doi.org/10.1051/medsci/20052111969
Publié en ligne 15 novembre 2005
  1. Hamosh A, Scott AF, Amberger J, et al. Online Mendelian inheritance in man (OMIM). Hum Mutat 2000; 15 : 57–61. [Google Scholar]
  2. Stenson PD, Ball EV, Mort M, et al. Human gene mutation database (HGMD) : 2003 update. Hum Mutat 2003; 21 : 577–81. [Google Scholar]
  3. Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 1998; 63 : 474–88. [Google Scholar]
  4. Brown LY, Brown SA. Alanine tracts : the expanding story of human illness and trinucleotide repeats. Trends Genet 2004; 20 : 51–8. [Google Scholar]
  5. Lalioti MD, Scott HS, Buresi C, et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 1997; 386 : 847–51. [Google Scholar]
  6. Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26 : 191–4. [Google Scholar]
  7. Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001; 293 : 816–7. [Google Scholar]
  8. Albrecht A, Mundlos S. The other trinucleotide repeat : polyalanine expansion disorders. Curr Opin Genet Dev 2005; 15 : 285–93. [Google Scholar]
  9. Warren ST. Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science 1997; 275 : 408–9. [Google Scholar]
  10. Emanuel BS, Shaikh TH. Segmental duplications : an expanding role in genomic instability and disease. Nat Rev Genet 2001; 791–800. [Google Scholar]
  11. Shaw CJ, Lupski JR. Implications of the human genome architecture for rearrangement-based disorders : the genomic basis of disease. Hum Mol Genet 2004; 13 : 57–64. [Google Scholar]
  12. Abeysinghe SS, Chuzhanova N, Krawczak M, et al. Translocation and gross deletion breakpoints in human inherited disease and cancer I : nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22 : 229–44. [Google Scholar]
  13. Chuzhanova N, Abeysinghe SS, Krawczak M, et al. Translocation and gross deletion breakpoints in human inherited disease and cancer II : potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 2003; 22 : 245–51. [Google Scholar]
  14. Kazazian HH Jr, Wrong C, Youssoufian H, et al. Haemophilia A resulting from de novo onsertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988; 332 : 164–6. [Google Scholar]
  15. Wallace MR, Andersen LB, Saulino AM, et al. A de novo Alu insertion results in neurofibromatosis type 1. Nature 1991; 353 : 864–6. [Google Scholar]
  16. Deininger PL, Batzer MA. Mammalian retroelements. Genome Res 2002; 12 : 1455–65. [Google Scholar]
  17. Jeffreys AJ, Tamaki K, MacLeod A, et al. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet 1994; 6 : 136–45. [Google Scholar]
  18. Spence JE, Perciaccante RG, Greig GM, et al. Uniparental disomy as a mechanism for human genetic disease. Am J Hum Genet 1988; 42 : 217–26. [Google Scholar]
  19. Surani MA. Genetics : immaculate misconception. Nature 2002; 416 : 491–3. [Google Scholar]
  20. Fisher RA, Hodges MD, Newlands ES. Familial recurrent hydatidiform mole: a review. J Reprod Med 2004; 49 : 595–601. [Google Scholar]
  21. Goriely A, McVean GA, van Pelt AM, et al. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci USA 2005; 102 : 6051–6. [Google Scholar]
  22. Tufarelli C, Stanley JA, Garrick D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003; 34 : 157–65. [Google Scholar]
  23. Weaving LS, Ellaway CJ, Gecz J, Christodoulou J. Rett syndrome : clinical review and genetic update. J Med Genet 2005; 42 : 1–7. [Google Scholar]
  24. Ranum LP, Day JW. Myotonic dystrophy : RNA pathogenesis comes into focus. Am J Hum Genet 2004; 74 : 793–804. [Google Scholar]
  25. Wijmenga C, Hewitt JE, Sandkuijl LA, et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet 1992; 2 : 26–30. [Google Scholar]
  26. van der Maarel SM, Frants RR. The D4Z4 repeat-mediated pathogenesis of facioscapulohumeral muscular dystrophy. Am J Hum Genet 2005; 76 : 375–86. [Google Scholar]
  27. Gabellini D, Green MR, Tupler R. Inappropriate gene activation in FSHD : a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 2002; 110 : 339–48. [Google Scholar]
  28. Winokur ST, Chen YW, Masny PS, et al. Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 2003; 12 : 2895–907. [Google Scholar]
  29. Jiang G, Yang F, van Overveld PG, et al. Testing the position-effect variegation hypothesis for facioscapulohumeral muscular dystrophy by analysis of histone modification and gene expression in subtelomeric 4q. Hum Mol Genet 2003; 12 : 2909–21. [Google Scholar]
  30. Masny PS, Bengtsson U, Chung SA, et al. Localization of 4q35.2 to the nuclear periphery : is FSHD a nuclear envelope disease ? Hum Mol Genet 2004; 13 : 1857–71. [Google Scholar]
  31. Houdayer C, Stoppa-Lyonnet D. Transcriptional abnormalities and genetic testing. Med Sci (Paris) 2005; 21 : 170–4. [Google Scholar]
  32. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3 : 285–98. [Google Scholar]
  33. Higgs DR, Goodbourn SE, Lamb J, et al. Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 1983; 306 : 398–400. [Google Scholar]
  34. Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17 : 309–15. [Google Scholar]
  35. Conti E, Izaurralde E. Nonsense-mediated mRNA decay : molecular insights and mechanistic variations across species. Curr Opin Cell Biol 2005; 17 : 316–25. [Google Scholar]
  36. Inoue K, Khajavi M, Ohyama T, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 2004; 36 : 361–9. [Google Scholar]
  37. Vogt G, Chapgier A, Yang K, et al. Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nat Genet 2005; 37 : 692–700. [Google Scholar]
  38. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992; 1 : 445–66. [Google Scholar]
  39. Notaro R, Afolayan A, Luzzatto L. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB J 2000; 14 : 485–94. [Google Scholar]
  40. Gajko-Galicka A. Mutations in type I collagen genes resulting in osteogenesis imperfecta in humans. Acta Biochim Pol 2002; 49 : 433–41. [Google Scholar]
  41. Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet 1996; 13 : 233–7. [Google Scholar]
  42. Owen MC, Brennan SO, Lewis JH, Carrell RW. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med 1983; 309 : 694–8. [Google Scholar]
  43. Landles C, Bates GP. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep 2004; 5 : 958–63. [Google Scholar]
  44. Sasaki Y, Shimotake T, Go S, Iwai N. Total thyroidectomy for hereditary medullary thyroid carcinoma 12 years after correction of Hirschsprung’s disease. Eur J Surg 2001; 167 : 467–9. [Google Scholar]
  45. Clain J, Lehmann-Che J, Dugueperoux I, et al. Misprocessing of the CFTR protein leads to mild cystic fibrosis phenotype. Hum Mutat 2005; 25 : 360–71. [Google Scholar]
  46. Monplaisir N, Merault G, Poyart C, et al. Hemoglobin S Antilles : a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. Proc Natl Acad Sci USA 1986; 83 : 9363–7. [Google Scholar]
  47. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 2004; 23 : 11–27. [Google Scholar]
  48. Dermitzakis ET, Reymond A, Antonarakis SE. Conserved non-genic sequences - an unexpected feature of mammalian genomes. Nat Rev Genet 2005; 6 : 151–7. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.