Free Access
Issue
Med Sci (Paris)
Volume 21, Number 5, Mai 2005
Page(s) 530 - 534
Section M/S revues
DOI https://doi.org/10.1051/medsci/2005215530
Published online 15 May 2005
  1. Segers P, Stergiopulos N, Westerhof N, et al. Systemic and pulmonary hemodynamics assessed with a lumped-parameter heart-arterial interaction model. J Engin Mathematics 2003; 14 : 185–99. [Google Scholar]
  2. Monti A, Médigue C, Sorine M. Short-term control of the cardiovascular system : modelling and signal analysis. Rapport de recherche INRIA n° 4427. Paris : INRIA, 2002. [Google Scholar]
  3. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and aterial wall shear : observation, correlation and proposal of a shear dependant mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 1971; 177 : 109–59. [Google Scholar]
  4. Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis : quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53 : 502–14. [Google Scholar]
  5. Yamamoto T, Tanaka H, Jones CJH, et al. Blood velocity profiles in the origin of the canine renal-artery and their relevance in the localization and development of atherosclerosis. Arterioscler Thromb 1992; 12 : 626–32. [Google Scholar]
  6. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arterie. Circ Res 1990; 66 : 1045–66. [Google Scholar]
  7. Botnar R, Rappitsch G, Scheidegger MB, et al. Hemodynamics in the carotid artery bifurcation : a comparison between numerical simulations and in vitro MRI measurements. J Biomec 2000; 33 : 137–44. [Google Scholar]
  8. Gerbeau JF, Vidrascu M. A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Math Model Num Anal 2003; 37 : 663–80. [Google Scholar]
  9. Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comput Struct 2005; 83 : 155-65 (accessible sur http://www.sciencedirect.com/science/journal/00457949). [Google Scholar]
  10. Quarteroni A, Rozza G. Optimal control and shape optimization in aorto-coronaric bypass anastomoses. Math Models Meth Appl Sci 2003; 13 : 1801–23. [Google Scholar]
  11. Panfilov AV, Holden AV. Computational biology of the heart. Chichester : John Wiley and Sons, 1997. [Google Scholar]
  12. Huxley AF. Muscle structure and theories of contraction. In : Progress in biophysics and biological chemistry, vol. 7, chapter 6. Oxford : Pergamon Press, 1957. [Google Scholar]
  13. Zahalak GI. A distribution moment approximation for kinetic theories of muscular contraction. Math Biosci 1981; 55 : 89–114. [Google Scholar]
  14. Bestel J, Clément F, Sorine M. A biomechanical model of muscle contraction. In : Niessen WJ, Viergever MA, eds. Lecture notes in computer science, vol. 2208. New York : Springer Verlag, 2001. [Google Scholar]
  15. Jülicher F, Adjari A, Prost J. Modeling molecular motors. Rev Modern Phys 1997; 69 : 1269–81. [Google Scholar]
  16. Hill AV. The heat of shortening and the dynamic constants in muscle. Proc Roy Soc Lond B Biol Sci 1938; 126 : 136–95. [Google Scholar]
  17. Chapelle D, Clément F, Génot F, et al. A physiologically-based model for active cardiac muscle contraction. In : Katila T, Magnin I, Clarysse P, et al. eds. Functional imaging and modeling of the heart. New York : Springer Verlag, 2001. [Google Scholar]
  18. Blum J, Le Dimet FX. Assimilation de données pour les fluides géophysiques. Matapli 2002; 67 : 33–55. [Google Scholar]
  19. Sainte-Marie J, Chapelle D, Sorine M. Data assimilation for an electromechanical model of the myocardium. In : Bathe KJ, ed. Proceedings of the second MIT Conference on computational fluid and solid mechanics, 17-20 juin 2003, Cambridge, MA, USA, vol. 2. Amsterdam : Elsevier, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.