Free Access
Med Sci (Paris)
Volume 21, Number 5, Mai 2005
Page(s) 523 - 529
Section M/S revues
Published online 15 May 2005
  1. Bannister LH, Hopkins JM, Fowler RE, et al. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today 2000; 16 : 427–33. [Google Scholar]
  2. Przyborski JM, Wickert H, Krohne G, et al. Maurer’s clefts : a novel secretory organelle ? Mol Biochem Parasitol 2003; 132 : 17–26. [Google Scholar]
  3. Wickert H, Wissing F, Andrews KT, et al. Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network. Eur J Cell Biol 2003; 82 : 271–84. [Google Scholar]
  4. Elmendorf HG, Haldar K. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. J Cell Biol 1994; 124 : 449–62. [Google Scholar]
  5. Haeggstrom M, Kironde F, Berzins K, et al. Common trafficking pathway for variant antigens destined for the surface of the Plasmodium falciparum-infected erythrocyte. Mol Biochem Parasitol 2004; 133 : 1–14. [Google Scholar]
  6. Albano FR, Foley M, Tilley L. Export of parasite proteins to the erythrocyte cytoplasm : secretory machinery and traffic signals. Novartis Found Symp 1999; 226 : 157–75. [Google Scholar]
  7. Goodyer ID, Pouvelle B, Schneider TG, et al. Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Mol Biochem Parasitol 1997; 87 : 13–28. [Google Scholar]
  8. Waller RF, Reed MB, Cowman AF, et al. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 2000; 19 : 1794–802. [Google Scholar]
  9. Cheresh P, Harrison T, Fujioka H, et al. Targeting the malarial plastid via the parasitophorous vacuole. J Biol Chem 2002; 277 : 16265–77. [Google Scholar]
  10. Bender A, van Dooren GG, Ralph SA, et al. Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 2003; 132 : 59–66. [Google Scholar]
  11. Klemba M, Beatty W, Gluzman I, et al. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. J Cell Biol 2004; 164 : 47–56. [Google Scholar]
  12. Ansorge I, Benting J, Bhakdi S, et al. Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 1996; 315 : 307–14. [Google Scholar]
  13. Lingelbach K. Protein trafficking in the Plasmodium-falciparum-infected erythrocyte: from models to mechanisms. Ann Trop Med Parasitol 1997; 91 : 543–9. [Google Scholar]
  14. Burghaus PA, Lingelbach K. Luciferase, when fused to an N-terminal signal peptide, is secreted from transfected Plasmodium falciparum and transported to the cytosol of infected erythrocytes. J Biol Chem 2001; 276 : 26838–45. [Google Scholar]
  15. Adisa A, Rug M, Foley M, et al. Characterisation of a delta-COP homologue in the malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 2002; 123 : 11–21. [Google Scholar]
  16. Wickham ME, Rug M, Ralph S, et al. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 2001; 20 : 5636–49. [Google Scholar]
  17. Lopez-Estrano C, Bhattacharjee S, Harrison T, et al. Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 2003; 100 : 12402–7. [Google Scholar]
  18. Adisa A, Rug M, Klonis N, et al. The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. J Biol Chem 2003; 278 : 6532–42. [Google Scholar]
  19. Taraschi TF, O’Donnell M, Martinez S, et al. Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 2003; 102 : 3420–6. [Google Scholar]
  20. Blisnick T, Morales Betoulle ME, Barale JC, et al. Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 2000; 111 : 107–21. [Google Scholar]
  21. Banumathy G, Singh V, Tatu U. Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 2002; 277 : 3902–12. [Google Scholar]
  22. Cooke BM, Lingelbach K, Bannister LH, et al. Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol 2004; 20 : 581–9. [Google Scholar]
  23. Adisa A, Albano FR, Reeder J, et al. Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. J Cell Sci 2001; 114 : 3377–86. [Google Scholar]
  24. Hayashi M, Taniguchi S, Ishizuka Y, et al. A homologue of N-ethylmaleimide-sensitive factor in the malaria parasite Plasmodium falciparum is exported and localized in vesicular structures in the cytoplasm of infected erythrocytes in the brefeldin A-sensitive pathway. J Biol Chem 2001; 276 : 15249–55. [Google Scholar]
  25. Spang A. Vesicle transport : a close collaboration of Rabs and effectors. Curr Biol 2004; 14 : R33–4. [Google Scholar]
  26. Quevillon E, Spielmann T, Brahimi K, et al. The Plasmodium falciparum family of Rab GTPases. Gene 2003; 306 : 13–25. [Google Scholar]
  27. Chakrabarti D, AzamT, DelVecchio C, et al. Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol 1998; 94 : 175–84. [Google Scholar]
  28. Attal G, Langsley G. A Plasmodium falciparum homologue of rab specific GDP dissociation inhibitor (rabGDI). Mol Biochem Parasitol 1996; 79 : 91–5. [Google Scholar]
  29. Gotte M, Lazar T, Yoo JS, et al. The full complement of yeast Ypt/Rab-GTPases and their involvement in exo- and endocytic trafficking. Subcell Biochem 2000; 34 : 133–73. [Google Scholar]
  30. Armstrong J, Craighead MW, Watson R, et al. Schizosaccharomyces pombe ypt5 : a homologue of the rab5 endosome fusion regulator. Mol Biol Cell 1993; 4 : 583–92. [Google Scholar]
  31. Robibaro B, Stedman TT, Coppens I, et al. Toxoplasma gondii Rab5 enhances cholesterol acquisition from host cells. Cell Microbiol 2002; 4 : 139–52. [Google Scholar]
  32. Singh SB, Tandon R, Krishnamurthy G, et al. Rab5-mediated endosome-endosome fusion regulates hemoglobin endocytosis in Leishmania donovani. EMBO J 2003; 22 : 5712–22. [Google Scholar]
  33. Haldar K, Mohandas N, Samuel BU, et al. Protein and lipid trafficking induced in erythrocytes infected by malaria parasites. Cell Microbiol 2002; 4 : 383–95. [Google Scholar]
  34. Moore RH, Millman EE, Alpizar-Foster E, et al. Rab11 regulates the recycling and lysosome targeting of beta2-adrenergic receptors. J Cell Sci 2004; 117 : 3107–17. [Google Scholar]
  35. Harrison T, Samuel BU, Akompong T, et al. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 2003; 301 : 1734–6. [Google Scholar]
  36. Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004; 306 : 1930–3. [Google Scholar]
  37. Hiller NL, Bhattacharjee S, van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 2004; 306 : 1934–7. [Google Scholar]
  38. Akompong T, Kadekoppala M, Harrison T, et al. Trans expression of a Plasmodium falciparum histidine-rich protein II (HRPII) reveals sorting of soluble proteins in the periphery of the host erythrocyte and disrupts transport to the malarial food vacuole. J Biol Chem 2002; 277 : 28923–33. [Google Scholar]
  39. De Castro FA, Ward GE, Jambou R, et al. Identification of a family of Rab G-proteins in Plasmodium falciparum and a detailed characterisation of pfrab6. Mol Biochem Parasitol 1996; 80 : 77–88. [Google Scholar]
  40. Gorlich D, Prehn S, Hartmann E, et al. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 1992; 71 : 489–503. [Google Scholar]
  41. Dahl EL, Rosenthal PJ. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 2005; 139 : 205–12. [Google Scholar]
  42. Liu J, Gluzman IY, Drew ME, Goldberg DE. The role of Plasmodium falciparum food vacuole plasmepsins. J Biol Chem 2005; 280 : 1432–7. [Google Scholar]
  43. Foth BJ, Stimmler LM, Handman E, et al. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 2005; 55 : 39–53. [Google Scholar]
  44. Yano K, Komaki-Yasuda K, Kobayashi T, et al. Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. Parasitol Int 2005; 54 : 35–41. [Google Scholar]
  45. Hodder AN, Drew DR, Epa VC, et al. Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 2003; 278 : 48169–77. [Google Scholar]
  46. Culvenor JG, Crewther PE. S-antigen localization in the erythrocytic stages of Plasmodium falciparum. J Protozool 1990;37 : 59–65. [Google Scholar]
  47. Chen Q, Barragan A, Fernandez V, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med 1998; 187 : 15–23. [Google Scholar]
  48. Kyes SA, Rowe JA, Kriek N, Newbold CI. Rifins : a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 1999; 96 : 9333–8. [Google Scholar]
  49. Kaviratne M, Khan SM, Jarra W, Preiser PR. Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot Cell 2002; 1 : 926–35. [Google Scholar]
  50. Waller KL, Cooke BM, Nunomura W, et al. Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). J Biol Chem 1999; 274 : 23808–13. [Google Scholar]
  51. Benedetti CE, Kobarg J, Pertinhez TA, et al. Plasmodium falciparum histidine-rich protein II binds to actin, phosphatidylinositol 4,5-bisphosphate and erythrocyte ghosts in a pH-dependent manner and undergoes coil-to-helix transitions in anionic micelles. Mol Biochem Parasitol 2003; 128 : 157–66. [Google Scholar]
  52. Gardner MJ, Tettelin H, Carucci DJ, et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 1998; 282 : 1126–32. [Google Scholar]
  53. Spielmann T, Beck HP. Analysis of stage-specific transcription in Plasmodium falciparum reveals a set of genes exclusively transcribed in ring stage parasites. Mol Biochem Parasitol 2000; 111 : 453–8. [Google Scholar]
  54. Langsley G, Chakrabarti D. Plasmodium falciparum : the small GTPase rab11. Exp Parasitol 1996; 83 : 250–1. [Google Scholar]
  55. Hez-Deroubaix S, Brahimi K, Sauerwein R, et al. The Plasmodium falciparum GTPase Rab11B, a new liver-stage specific protein. Mol Biochem Parasitol 2005 (soumis pour publication). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.