Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 5, Mai 2005
Page(s) 523 - 529
Section M/S revues
Publié en ligne 15 mai 2005
  1. Bannister LH, Hopkins JM, Fowler RE, et al. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today 2000; 16 : 427–33. [Google Scholar]
  2. Przyborski JM, Wickert H, Krohne G, et al. Maurer’s clefts : a novel secretory organelle ? Mol Biochem Parasitol 2003; 132 : 17–26. [Google Scholar]
  3. Wickert H, Wissing F, Andrews KT, et al. Evidence for trafficking of PfEMP1 to the surface of P. falciparum-infected erythrocytes via a complex membrane network. Eur J Cell Biol 2003; 82 : 271–84. [Google Scholar]
  4. Elmendorf HG, Haldar K. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. J Cell Biol 1994; 124 : 449–62. [Google Scholar]
  5. Haeggstrom M, Kironde F, Berzins K, et al. Common trafficking pathway for variant antigens destined for the surface of the Plasmodium falciparum-infected erythrocyte. Mol Biochem Parasitol 2004; 133 : 1–14. [Google Scholar]
  6. Albano FR, Foley M, Tilley L. Export of parasite proteins to the erythrocyte cytoplasm : secretory machinery and traffic signals. Novartis Found Symp 1999; 226 : 157–75. [Google Scholar]
  7. Goodyer ID, Pouvelle B, Schneider TG, et al. Characterization of macromolecular transport pathways in malaria-infected erythrocytes. Mol Biochem Parasitol 1997; 87 : 13–28. [Google Scholar]
  8. Waller RF, Reed MB, Cowman AF, et al. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 2000; 19 : 1794–802. [Google Scholar]
  9. Cheresh P, Harrison T, Fujioka H, et al. Targeting the malarial plastid via the parasitophorous vacuole. J Biol Chem 2002; 277 : 16265–77. [Google Scholar]
  10. Bender A, van Dooren GG, Ralph SA, et al. Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 2003; 132 : 59–66. [Google Scholar]
  11. Klemba M, Beatty W, Gluzman I, et al. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. J Cell Biol 2004; 164 : 47–56. [Google Scholar]
  12. Ansorge I, Benting J, Bhakdi S, et al. Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. Biochem J 1996; 315 : 307–14. [Google Scholar]
  13. Lingelbach K. Protein trafficking in the Plasmodium-falciparum-infected erythrocyte: from models to mechanisms. Ann Trop Med Parasitol 1997; 91 : 543–9. [Google Scholar]
  14. Burghaus PA, Lingelbach K. Luciferase, when fused to an N-terminal signal peptide, is secreted from transfected Plasmodium falciparum and transported to the cytosol of infected erythrocytes. J Biol Chem 2001; 276 : 26838–45. [Google Scholar]
  15. Adisa A, Rug M, Foley M, et al. Characterisation of a delta-COP homologue in the malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 2002; 123 : 11–21. [Google Scholar]
  16. Wickham ME, Rug M, Ralph S, et al. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J 2001; 20 : 5636–49. [Google Scholar]
  17. Lopez-Estrano C, Bhattacharjee S, Harrison T, et al. Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 2003; 100 : 12402–7. [Google Scholar]
  18. Adisa A, Rug M, Klonis N, et al. The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. J Biol Chem 2003; 278 : 6532–42. [Google Scholar]
  19. Taraschi TF, O’Donnell M, Martinez S, et al. Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 2003; 102 : 3420–6. [Google Scholar]
  20. Blisnick T, Morales Betoulle ME, Barale JC, et al. Pfsbp1, a Maurer’s cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol Biochem Parasitol 2000; 111 : 107–21. [Google Scholar]
  21. Banumathy G, Singh V, Tatu U. Host chaperones are recruited in membrane-bound complexes by Plasmodium falciparum. J Biol Chem 2002; 277 : 3902–12. [Google Scholar]
  22. Cooke BM, Lingelbach K, Bannister LH, et al. Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol 2004; 20 : 581–9. [Google Scholar]
  23. Adisa A, Albano FR, Reeder J, et al. Evidence for a role for a Plasmodium falciparum homologue of Sec31p in the export of proteins to the surface of malaria parasite-infected erythrocytes. J Cell Sci 2001; 114 : 3377–86. [Google Scholar]
  24. Hayashi M, Taniguchi S, Ishizuka Y, et al. A homologue of N-ethylmaleimide-sensitive factor in the malaria parasite Plasmodium falciparum is exported and localized in vesicular structures in the cytoplasm of infected erythrocytes in the brefeldin A-sensitive pathway. J Biol Chem 2001; 276 : 15249–55. [Google Scholar]
  25. Spang A. Vesicle transport : a close collaboration of Rabs and effectors. Curr Biol 2004; 14 : R33–4. [Google Scholar]
  26. Quevillon E, Spielmann T, Brahimi K, et al. The Plasmodium falciparum family of Rab GTPases. Gene 2003; 306 : 13–25. [Google Scholar]
  27. Chakrabarti D, AzamT, DelVecchio C, et al. Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol 1998; 94 : 175–84. [Google Scholar]
  28. Attal G, Langsley G. A Plasmodium falciparum homologue of rab specific GDP dissociation inhibitor (rabGDI). Mol Biochem Parasitol 1996; 79 : 91–5. [Google Scholar]
  29. Gotte M, Lazar T, Yoo JS, et al. The full complement of yeast Ypt/Rab-GTPases and their involvement in exo- and endocytic trafficking. Subcell Biochem 2000; 34 : 133–73. [Google Scholar]
  30. Armstrong J, Craighead MW, Watson R, et al. Schizosaccharomyces pombe ypt5 : a homologue of the rab5 endosome fusion regulator. Mol Biol Cell 1993; 4 : 583–92. [Google Scholar]
  31. Robibaro B, Stedman TT, Coppens I, et al. Toxoplasma gondii Rab5 enhances cholesterol acquisition from host cells. Cell Microbiol 2002; 4 : 139–52. [Google Scholar]
  32. Singh SB, Tandon R, Krishnamurthy G, et al. Rab5-mediated endosome-endosome fusion regulates hemoglobin endocytosis in Leishmania donovani. EMBO J 2003; 22 : 5712–22. [Google Scholar]
  33. Haldar K, Mohandas N, Samuel BU, et al. Protein and lipid trafficking induced in erythrocytes infected by malaria parasites. Cell Microbiol 2002; 4 : 383–95. [Google Scholar]
  34. Moore RH, Millman EE, Alpizar-Foster E, et al. Rab11 regulates the recycling and lysosome targeting of beta2-adrenergic receptors. J Cell Sci 2004; 117 : 3107–17. [Google Scholar]
  35. Harrison T, Samuel BU, Akompong T, et al. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 2003; 301 : 1734–6. [Google Scholar]
  36. Marti M, Good RT, Rug M, et al. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004; 306 : 1930–3. [Google Scholar]
  37. Hiller NL, Bhattacharjee S, van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 2004; 306 : 1934–7. [Google Scholar]
  38. Akompong T, Kadekoppala M, Harrison T, et al. Trans expression of a Plasmodium falciparum histidine-rich protein II (HRPII) reveals sorting of soluble proteins in the periphery of the host erythrocyte and disrupts transport to the malarial food vacuole. J Biol Chem 2002; 277 : 28923–33. [Google Scholar]
  39. De Castro FA, Ward GE, Jambou R, et al. Identification of a family of Rab G-proteins in Plasmodium falciparum and a detailed characterisation of pfrab6. Mol Biochem Parasitol 1996; 80 : 77–88. [Google Scholar]
  40. Gorlich D, Prehn S, Hartmann E, et al. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 1992; 71 : 489–503. [Google Scholar]
  41. Dahl EL, Rosenthal PJ. Biosynthesis, localization, and processing of falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 2005; 139 : 205–12. [Google Scholar]
  42. Liu J, Gluzman IY, Drew ME, Goldberg DE. The role of Plasmodium falciparum food vacuole plasmepsins. J Biol Chem 2005; 280 : 1432–7. [Google Scholar]
  43. Foth BJ, Stimmler LM, Handman E, et al. The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 2005; 55 : 39–53. [Google Scholar]
  44. Yano K, Komaki-Yasuda K, Kobayashi T, et al. Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. Parasitol Int 2005; 54 : 35–41. [Google Scholar]
  45. Hodder AN, Drew DR, Epa VC, et al. Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 2003; 278 : 48169–77. [Google Scholar]
  46. Culvenor JG, Crewther PE. S-antigen localization in the erythrocytic stages of Plasmodium falciparum. J Protozool 1990;37 : 59–65. [Google Scholar]
  47. Chen Q, Barragan A, Fernandez V, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med 1998; 187 : 15–23. [Google Scholar]
  48. Kyes SA, Rowe JA, Kriek N, Newbold CI. Rifins : a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 1999; 96 : 9333–8. [Google Scholar]
  49. Kaviratne M, Khan SM, Jarra W, Preiser PR. Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryot Cell 2002; 1 : 926–35. [Google Scholar]
  50. Waller KL, Cooke BM, Nunomura W, et al. Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). J Biol Chem 1999; 274 : 23808–13. [Google Scholar]
  51. Benedetti CE, Kobarg J, Pertinhez TA, et al. Plasmodium falciparum histidine-rich protein II binds to actin, phosphatidylinositol 4,5-bisphosphate and erythrocyte ghosts in a pH-dependent manner and undergoes coil-to-helix transitions in anionic micelles. Mol Biochem Parasitol 2003; 128 : 157–66. [Google Scholar]
  52. Gardner MJ, Tettelin H, Carucci DJ, et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 1998; 282 : 1126–32. [Google Scholar]
  53. Spielmann T, Beck HP. Analysis of stage-specific transcription in Plasmodium falciparum reveals a set of genes exclusively transcribed in ring stage parasites. Mol Biochem Parasitol 2000; 111 : 453–8. [Google Scholar]
  54. Langsley G, Chakrabarti D. Plasmodium falciparum : the small GTPase rab11. Exp Parasitol 1996; 83 : 250–1. [Google Scholar]
  55. Hez-Deroubaix S, Brahimi K, Sauerwein R, et al. The Plasmodium falciparum GTPase Rab11B, a new liver-stage specific protein. Mol Biochem Parasitol 2005 (soumis pour publication). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.