Free Access
Med Sci (Paris)
Volume 21, Number 4, Avril 2005
Page(s) 396 - 404
Section M/S revues
Published online 15 April 2005
  1. Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 2004; 89 : 2595–600. [Google Scholar]
  2. Ozanne SE, Fernandez-Twinn D, Hales CN. Fetal growth and adult diseases. Semin Perinatol 2004; 28 : 81–7. [Google Scholar]
  3. Issa JP. Epigenetic variation and human disease. J Nutr 2002; 132 : 2388S-2392S. [Google Scholar]
  4. Ozanne SE, Hales CN. Lifespan: Catch-up growth and obesity in male mice. Nature 2004; 427 : 411–2. [Google Scholar]
  5. Armitage JA, Khan IY, Taylor PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance : how strong is the evidence from experimental models in mammals ? J Physiol 2004; 561 : 355–77. [Google Scholar]
  6. Melzner I, Scott V, Dorsch K, et al. Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J Biol Chem 2002; 277 : 45420–7. [Google Scholar]
  7. Yokomori N, Tawata M, Onaya T. DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells. Diabetologia 2002; 45 : 140–8. [Google Scholar]
  8. Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004; 279 : 29147–54. [Google Scholar]
  9. Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 2002; 7 : 5–11. [Google Scholar]
  10. MacLennan NK, James SJ, Melnyk S, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 2004; 18 : 43–50. [Google Scholar]
  11. Elmquist JK, Flier JS. Neuroscience. The fat-brain axis enters a new dimension. Science 2004; 304 : 63–4. [Google Scholar]
  12. Blondeau B, Avril I, Duchene B, Breant B. Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition. Diabetologia 2002; 45 : 394–401. [Google Scholar]
  13. Srinivasan M, Aalinkeel R, Song F, Patel MS. Programming of islet functions in the progeny of hyperinsulinemic/obese rats. Diabetes 2003; 52 : 984–90. [Google Scholar]
  14. Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7 : 847–54. [Google Scholar]
  15. Pembrey M. Imprinting and transgenerational modulation of gene expression: Human growth as a model. Acta Genet Med Gemellol (Roma) 1996; 45 : 111–25. [Google Scholar]
  16. Junien C. L’empreinte parentale : de la guerre des sexes à la solidarité entre générations. Med Sci (Paris) 2000; 3 : 336–344. [Google Scholar]
  17. Beaudet AL, Jiang YH. A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am J Hum Genet 2002; 70 : 1389–97. [Google Scholar]
  18. Young LE. Imprinting of genes and the Barker hypothesis. Twin Res 2001; 4 : 307–17. [Google Scholar]
  19. Constancia M, Kelsey G, Reik W. Resourceful imprinting. Nature 2004; 432 : 53–7. [Google Scholar]
  20. Keverne EB. Genomic imprinting and the maternal brain. Prog Brain Res 2001; 133 : 279–85. [Google Scholar]
  21. Plagge A, Gordon E, Dean W, et al. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 2004; 36 : 818–26. [Google Scholar]
  22. Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc R Soc Lond B Biol Sci 2004; 271 : 1303–9. [Google Scholar]
  23. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20 : 63–8. [Google Scholar]
  24. Delrue MA, Michaud JL. Fat chance: Genetic syndromes with obesity. Clin Genet 2004; 66 : 83–93. [Google Scholar]
  25. Reik W, Constancia M, Fowden A, et al. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 2003; 547 : 35–44. [Google Scholar]
  26. Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 2004; 36 : 1296–300. [Google Scholar]
  27. Moraes RC, Blondet A, Birkenkamp-Demtroeder K, et al. Study of the alteration of gene expression in adipose tissue of diet-induced obese mice by microarray and reverse transcription-polymerase chain reaction analyses. Endocrinology 2003; 144 : 4773–82. [Google Scholar]
  28. Takahashi M, Kamei Y, Ezaki O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab 2005; 288 : E117–24. [Google Scholar]
  29. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002; 10 : 682–8. [Google Scholar]
  30. Pembrey ME. Time to take epigenetic inheritance seriously. Eur J Hum Genet 2002; 10 : 669–71. [Google Scholar]
  31. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429 : 457–63. [Google Scholar]
  32. Kelly TL, Trasler JM. Reproductive epigenetics. Clin Genet 2004; 65 : 247–60. [Google Scholar]
  33. Mann MR, Lee SS, Doherty AS, et al. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004; 131 : 3727–35. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.