Accès gratuit
Med Sci (Paris)
Volume 21, Numéro 4, Avril 2005
Page(s) 396 - 404
Section M/S revues
Publié en ligne 15 avril 2005
  1. Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 2004; 89 : 2595–600. [Google Scholar]
  2. Ozanne SE, Fernandez-Twinn D, Hales CN. Fetal growth and adult diseases. Semin Perinatol 2004; 28 : 81–7. [Google Scholar]
  3. Issa JP. Epigenetic variation and human disease. J Nutr 2002; 132 : 2388S-2392S. [Google Scholar]
  4. Ozanne SE, Hales CN. Lifespan: Catch-up growth and obesity in male mice. Nature 2004; 427 : 411–2. [Google Scholar]
  5. Armitage JA, Khan IY, Taylor PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance : how strong is the evidence from experimental models in mammals ? J Physiol 2004; 561 : 355–77. [Google Scholar]
  6. Melzner I, Scott V, Dorsch K, et al. Leptin gene expression in human preadipocytes is switched on by maturation-induced demethylation of distinct CpGs in its proximal promoter. J Biol Chem 2002; 277 : 45420–7. [Google Scholar]
  7. Yokomori N, Tawata M, Onaya T. DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells. Diabetologia 2002; 45 : 140–8. [Google Scholar]
  8. Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem 2004; 279 : 29147–54. [Google Scholar]
  9. Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 2002; 7 : 5–11. [Google Scholar]
  10. MacLennan NK, James SJ, Melnyk S, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 2004; 18 : 43–50. [Google Scholar]
  11. Elmquist JK, Flier JS. Neuroscience. The fat-brain axis enters a new dimension. Science 2004; 304 : 63–4. [Google Scholar]
  12. Blondeau B, Avril I, Duchene B, Breant B. Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition. Diabetologia 2002; 45 : 394–401. [Google Scholar]
  13. Srinivasan M, Aalinkeel R, Song F, Patel MS. Programming of islet functions in the progeny of hyperinsulinemic/obese rats. Diabetes 2003; 52 : 984–90. [Google Scholar]
  14. Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7 : 847–54. [Google Scholar]
  15. Pembrey M. Imprinting and transgenerational modulation of gene expression: Human growth as a model. Acta Genet Med Gemellol (Roma) 1996; 45 : 111–25. [Google Scholar]
  16. Junien C. L’empreinte parentale : de la guerre des sexes à la solidarité entre générations. Med Sci (Paris) 2000; 3 : 336–344. [Google Scholar]
  17. Beaudet AL, Jiang YH. A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am J Hum Genet 2002; 70 : 1389–97. [Google Scholar]
  18. Young LE. Imprinting of genes and the Barker hypothesis. Twin Res 2001; 4 : 307–17. [Google Scholar]
  19. Constancia M, Kelsey G, Reik W. Resourceful imprinting. Nature 2004; 432 : 53–7. [Google Scholar]
  20. Keverne EB. Genomic imprinting and the maternal brain. Prog Brain Res 2001; 133 : 279–85. [Google Scholar]
  21. Plagge A, Gordon E, Dean W, et al. The imprinted signaling protein XL alpha s is required for postnatal adaptation to feeding. Nat Genet 2004; 36 : 818–26. [Google Scholar]
  22. Curley JP, Barton S, Surani A, Keverne EB. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc R Soc Lond B Biol Sci 2004; 271 : 1303–9. [Google Scholar]
  23. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20 : 63–8. [Google Scholar]
  24. Delrue MA, Michaud JL. Fat chance: Genetic syndromes with obesity. Clin Genet 2004; 66 : 83–93. [Google Scholar]
  25. Reik W, Constancia M, Fowden A, et al. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 2003; 547 : 35–44. [Google Scholar]
  26. Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 2004; 36 : 1296–300. [Google Scholar]
  27. Moraes RC, Blondet A, Birkenkamp-Demtroeder K, et al. Study of the alteration of gene expression in adipose tissue of diet-induced obese mice by microarray and reverse transcription-polymerase chain reaction analyses. Endocrinology 2003; 144 : 4773–82. [Google Scholar]
  28. Takahashi M, Kamei Y, Ezaki O. Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. Am J Physiol Endocrinol Metab 2005; 288 : E117–24. [Google Scholar]
  29. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 2002; 10 : 682–8. [Google Scholar]
  30. Pembrey ME. Time to take epigenetic inheritance seriously. Eur J Hum Genet 2002; 10 : 669–71. [Google Scholar]
  31. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429 : 457–63. [Google Scholar]
  32. Kelly TL, Trasler JM. Reproductive epigenetics. Clin Genet 2004; 65 : 247–60. [Google Scholar]
  33. Mann MR, Lee SS, Doherty AS, et al. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004; 131 : 3727–35. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.