Free Access
Med Sci (Paris)
Volume 21, Number 1, Janvier 2005
Page(s) 66 - 72
Section M/S Revues
Published online 15 January 2005
  1. Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology : biological timekeeping. Sunderland, MA : Sinauer Associates, 2003 : 406 p. [Google Scholar]
  2. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418 : 935–41. [Google Scholar]
  3. Cermakian N, Boivin DB. A molecular perspective of human circadian rhythm disorders. Brain Res Brain Res Rev 2003; 42 : 204–20. [Google Scholar]
  4. Emery P, Reppert SM. A rhythmic ror. Neuron 2004; 43 : 443–6. [Google Scholar]
  5. Hattar S, Lucas RJ, Mrosovsky N, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003; 424 : 76–81. [Google Scholar]
  6. Hannibal J. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res 2002; 309 : 73–88. [Google Scholar]
  7. Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. Bimodal regulation of mperiod promoters by creb-dependent signaling and clock/bmal1 activity. Proc Natl Acad Sci USA 2002; 99 : 7728–33. [Google Scholar]
  8. Challet E, Pevet P. Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front Biosci 2003; 8 : S246–57. [Google Scholar]
  9. Moore RY, Speh JC. Gaba is the principal neurotransmitter of the circadian system. Neurosci Lett 1993; 150 : 112–6. [Google Scholar]
  10. Perreau-Lenz S, Kalsbeek A, Garidou ML, et al. Suprachiasmatic control of melatonin synthesis in rats : inhibitory and stimulatory mechanisms. Eur J Neurosci 2003; 17 : 221–8. [Google Scholar]
  11. Dardente H, Menet JS, Challet E, et al. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Brain Res Mol Brain Res 2004; 124 : 143–51. [Google Scholar]
  12. Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14 : 697–706. [Google Scholar]
  13. Liu C, Weaver DR, Strogatz SH, Reppert SM. Cellular construction of a circadian clock : period determination in the suprachiasmatic nuclei. Cell 1997; 91 : 855–60. [Google Scholar]
  14. Herzog ED, Aton SJ, Numano R, et al. Temporal precision in the mammalian circadian system : a reliable clock from less reliable neurons. J Biol Rhythms 2004; 19 : 35–46. [Google Scholar]
  15. Yamaguchi S, Isejima H, Matsuo T, et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 2003; 302 : 1408–12. [Google Scholar]
  16. Nakamura W, Honma S, Shirakawa T, Honma K. Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci 2001; 14 : 666–74. [Google Scholar]
  17. Hamada T, LeSauter J, Venuti JM, Silver R. Expression of period genes : rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci 2001; 21 : 7742–50. [Google Scholar]
  18. Dardente H, Poirel VJ, Klosen P, et al. Per and neuropeptide expression in the rat suprachiasmatic nuclei : compartmentalization and differential cellular induction by light. Brain Res 2002; 958 : 261–71. [Google Scholar]
  19. Yan L, Okamura H. Gradients in the circadian expression of per1 and per2 genes in the rat suprachiasmatic nucleus. Eur J Neurosci 2002; 15 : 1153–62. [Google Scholar]
  20. LeSauter J, Yan L, Vishnubhotla B, et al. A short half-life gfp mouse model for analysis of suprachiasmatic nucleus organization. Brain Res 2003; 964 : 279–87. [Google Scholar]
  21. Hamada T, Antle MC, Silver R. Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur J Neurosci 2004; 19 : 1741–8. [Google Scholar]
  22. Herzog ED, Geusz ME, Khalsa SB, et al. Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res 1997; 757 : 285–90. [Google Scholar]
  23. Jobst EE, Allen CN. Calbindin neurons in the hamster suprachiasmatic nucleus do not exhibit a circadian variation in spontaneous firing rate. Eur J Neurosci 2002; 16 : 2469–74. [Google Scholar]
  24. Low-Zeddies SS, Takahashi JS. Chimera analysis of the clock mutation in mice shows that complex cellular integration determines circadian behavior. Cell 2001; 105 : 25–42. [Google Scholar]
  25. Yan L, Takekida S, Shigeyoshi Y, Okamura H. Per1 and per2 gene expression in the rat suprachiasmatic nucleus : circadian profile and the compartment-specific response to light. Neuroscience 1999; 94 : 141–50. [Google Scholar]
  26. Karatsoreos IN, Yan L, LeSauter J, Silver R. Phenotype matters : Identification of light-responsive cells in the mouse suprachiasmatic nucleus. J Neurosci 2004; 24 : 68–75. [Google Scholar]
  27. Yan L, Silver R. Differential induction and localization of mper1 and mper2 during advancing and delaying phase shifts. Eur J Neurosci 2002; 16 : 1531–40. [Google Scholar]
  28. Harmar AJ, Marston HM, Shen S, et al. The vpac(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 2002 109 : 497–508. [Google Scholar]
  29. Hughes AT, Fahey B, Cutler DJ, et al. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the vpac2 receptor. J Neurosci 2004; 24 : 3522–6. [Google Scholar]
  30. Colwell CS, Michel S, Itri J, et al. Disrupted circadian rhythms in vip- and phi-deficient mice. Am J Physiol Regul Integr Comp Physiol 2003; 285 : R939–49. [Google Scholar]
  31. Liu C, Reppert SM. Gaba synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 2000; 25 : 123–8. [Google Scholar]
  32. Shinohara K, Hiruma H, Funabashi T, Kimura F. Gabaergic modulation of gap junction communication in slice cultures of the rat suprachiasmatic nucleus. Neuroscience 2000; 96 : 591–6. [Google Scholar]
  33. Prosser RA, Rutishauser U, Ungers G, et al. Intrinsic role of polysialylated neural cell adhesion molecule in photic phase resetting of the mammalian circadian clock. J Neurosci 2003; 23 : 652–8. [Google Scholar]
  34. Serviere J, Lavialle M. Astrocytes in the mammalian circadian clock : putative roles. Prog Brain Res 1996; 111 : 57–73. [Google Scholar]
  35. Nagano M, Adachi A, Nakahama K, et al. An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J Neurosci 2003; 23 : 6141–51. [Google Scholar]
  36. de la Iglesia HO, Cambras T, Schwartz WJ, Diez-Noguera A. Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 2004; 14 : 796–800. [Google Scholar]
  37. Shinohara K, Honma S, Katsuno Y, et al. Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc Natl Acad Sci USA 1995; 92 : 7396–400. [Google Scholar]
  38. Shirakawa T, Honma S, Katsuno Y, et al. Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons. Eur J Neurosci 2000; 12 : 2833–8. [Google Scholar]
  39. De la Iglesia HO, Meyer J, Carpino A Jr, Schwartz WJ. Antiphase oscillation of the left and right suprachiasmatic nuclei. Science 2000; 290 : 799–801. [Google Scholar]
  40. Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res 2002; 309 : 193–9. [Google Scholar]
  41. Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288 : 682–5. [Google Scholar]
  42. Pando MP, Morse D, Cermakian N, Sassone-Corsi P. Phenotypic rescue of a peripheral clock genetic defect via scn hierarchical dominance. Cell 2002; 110 : 107–17. [Google Scholar]
  43. Akhtar RA, Reddy AB, Maywood ES, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cdna microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2002; 12 : 540–50. [Google Scholar]
  44. Sakamoto K, Nagase T, Fukui H, et al. Multitissue circadian expression of rat period homolog (rper2) mrna is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 1998; 273 : 27039–42. [Google Scholar]
  45. Yoo SH, Yamazaki S, Lowrey PL, et al. Period2 : luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 2004; 101 : 5339–46. [Google Scholar]
  46. Teboul M, Delaunay F. Ni maître ni esclave chez les horloges biologiques. Med Sci (Paris) 2004; 20 : 628–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.